• Title/Summary/Keyword: Hydrogen Leakage

Search Result 201, Processing Time 0.019 seconds

Consequence Analysis of Hydrogen Filling Stations based on Cascade Compressing Systems (케스케이드 방식 압축시스템 기반의 수소충전소에 대한 정성적 위험성평가)

  • Ahn, Byeong-Jun;Rhim, Jong-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.13-21
    • /
    • 2021
  • Because of the recent expansion of hydrogen vehicle supply, the installation of hydrogen filling station is expected to gradually expand. This study attempts to predict the damage scale and propose a safer design form based on the scenario that assumes the worst case of a hydrogen station. A Flacs solver using computational fluid dynamics (CFD) was used to predict the damage scale, and the accuracy was verified by comparing it with the experimental results of previous researchers. The damage scale prediction was conducted for hydrogen leakage and explosion, and the prediction target was the KR model based on the measured values. And as a comparative review model, a roofless model was selected without a ceiling. As a result of analyzing the two models, it was possible to confirm the accumulation and retention of hydrogen gas up to 60 vol% or more in the KR model, whereas in the case of the Roofless model, the phenomenon of discharge and diffusion to the outside of the charging station by riding the wall after leakage. I was able to check. In conclusion, it was reviewed that the type of hydrogen charging station without ceiling is more advantageous for safety than the hydrogen filling station model.

Risk Assessment Based on Highway Hydrogen Chloride Gas Leakage Scenario Using GIS (GIS를 활용한 고속도로 염화수소 가스 누출 시나리오 기반 리스크 평가)

  • Kim, Kuyoon;Lee, Jaejoon;Yun, Hongsik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.591-601
    • /
    • 2021
  • As the domestic chemical industry continues to develop, handling and transportation of chemicals increases every year. Road freight in Korea accounts for more than 90%, and most of the chemical transportation is done through roads. These chemical vehicles can lead to major accidents if accidents occur. Transportation vehicles are likely to cause water pollution and soil pollution, which are factors of environmental damage, as well as traffic accidents that are the primary damage. In this work, we write a scenario for hydrogen chloride gas leakage by setting Banpo IC and Seocho IC sections as research areas, and use the ALOHA program to measure the predicted distance and analyze the time when hydrogen chloride gas reached according to the distance. In addition, risk assessment using population density was carried out for areas of damage caused by time using GIS. This suggests the need for prevention and countermeasures in areas of damage.

Experiments of Continuous Release of Liquid Nitrogen (액체질소의 연속 누출 실험)

  • YONG-SHIK HAN;MYUNGBAE KIM;LE-DUY NGUYEN;MINCHANG KIM;CHANGHYUN KIM;TAE-HOON KIM;KYU HYUNG DO;BYUNG-IL CHOI
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.526-534
    • /
    • 2023
  • To evaluate the risk of leakage when using liquid hydrogen, a leakage test was conducted using liquid nitrogen in an outdoor environment rather than a laboratory environment. To assume a real-scale continuous leak, liquid nitrogen was allowed to leak for 5 minutes through a pipe with a diameter of 25.4 mm at a design spill rate of 60 L/min. The measurement system consisted of devices for climate conditions, LN2 spread and vapor clouds. The main experimental results are the liquid pool radius and the concentration of vapor cloud, and the radius of the liquid pool was compared with the numerical analysis results.

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • v.12 no.3
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.

Analysis of Safety by Expansion of Hydrogen Charging Station Facilities (수소충전소 설비 증설에 따른 안전성 해석)

  • Park, Woo-Il;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.83-90
    • /
    • 2020
  • This study conducted a risk assessment using the HyKoRAM program created by international joint research. Risk assessment was conducted based on accident scenarios and worst-case scenarios that could occur in the facility, reflecting design specifications of major facilities and components such as compressors, storage tanks, and hydrogen pipes in the hydrogen charging station, and environmental conditions around the demonstration complex. By identifying potential risks of hydrogen charging stations, we are going to derive the worst leakage, fire, explosion, and accident scenarios that can occur in hydrogen storage tanks, treatment facilities, storage facilities, and analyze the possibility of accidents and the effects of damage on human bodies and surrounding facilities to review safety.

A Study on the Development of Emergency Stop Safety Manual for Alkaline Water Electrolysis (알칼라인 수전해 설비의 비상정지 안전운전 매뉴얼 개발 연구 )

  • HYEONKI KIM;KWANGWON RHIE;TAEHUN KIM;SUNGCHUL HONG;DONGMIN LEE;DANBEE SHIN;DOOHYOUN SEO
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.460-467
    • /
    • 2024
  • As the hydrogen economy receives attention, much research has been conducted on water electrolysis that can produce green hydrogen. After investigating the various risk factors that exist in the alkaline water electrolysis process through hazard and operability study and job safety analysis, which are risk assessments, measures to ensure safety were prepared and made into a manual. Possible risks that could occur during various emergency stop situations and operations were identified, and leakage of potassium hydroxide (KOH) and hydrogen used as electrolyte appeared to be the main risk. If you utilize a risk assessment for the relevant equipment when writing a manual, you will be able to prepare work procedures that substantially reduce risk factors.

Lean Combustion Characteristics with Hydrogen Addition in a LPG Fuelled Spark Ignition Engine (LPG엔진에서 수소연료 보조분사에 의한 희박연소특성 연구)

  • Oh, Seung-Mook;Kim, Chang-Up;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2006
  • The basic effects of hydrogen addition for engine performance and emission were investigated in single cylinder research engine. Seven commercial injectors were tested to choose a suitable injector for hydrogen injection prior to its engine implementation. The hydrogen fuel leakage and flow rate were evaluated for each injector and KN3-1(Keihin, CO.) showed the best performance for hydrogen fuel. At the higher excess air ratio(${\lambda}=1.7$, 2.0), the better combustion stability was found with hydrogen addition even though its effect was small at lower excess air ratio (${\lambda}=1.0$, 1.3). Stable operation of the engine was even guaranteed at ${\lambda}=2.0$, if the amount of hydrogen gas was near 15% of total energy. In the lean region, ${\lambda}>1.3$, thermal efficiency was improved slightly while it was not clearly observed at ${\lambda}=1.0$, 1.3. It is considered that, in some cases, high temperature environment due to hydrogen combustion caused further heat loss to surroundings. Except for ${\lambda}=1.0$, with larger amount of hydrogen addition, CO was reduced drastically but it was emitted more at the leaner region. Nitric oxides(NOx) was increased a little more with hydrogen addition at ${\lambda}=1.0$, 1.3. However, at ${\lambda}>1.3$ its relative amount of emission was low. In addition, the amount of NOx was continuously decreased with hydrogen addition, but, at ${\lambda}=2.0$ the amount of NOx was lowered to 1/100 of that of ${\lambda}=1.0$. THC emission was significantly increased as air/fuel ratio was raised to leaner region due to misfire and partial burn.

Evaluation of Structural Safety and Leak Test for Hydrogen Fuel Cell-Based Truck Storage Systems (수소트럭 수소저장시스템에 대한 구조안전성 및 기밀성능평가)

  • Kim, Da-Eun;Yeom, Ji-Woong;Choi, Sung-Joon;Kim, Young-Kyu;Cho, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.1-7
    • /
    • 2020
  • Recently, hydrogen has gained considerable attention as an eco-friendly fuel, which helps in reducing carbon dioxide content. Specifically, there is a growing interest in vehicles powered by a hydrogen fuel cell, which is spotlighted as an environmental-friendly alternative. A hydrogen transport system, fuel cell system, fuel supply system, power management system, and hydrogen storage system are key parts of a hydrogen fuel cell truck. In this study, a hydrogen storage system is built and analyzed. The expansion length of the storage vessel at maximum operating pressure (87.5 MPa) was calculated with ABAQUS, and then the optimized system was designed and built. The leak and bubble tests were performed on the built storage system. The leakage of the system was measured to be under 5 cc/hr. Hence, it can be used as a research test for the safety evaluation of leading systems of hydrogen fuel-powered commercial vehicles.

Hydrogen Sulfide Sensing Characteristics Depending on Electrolytes of Pt/CNT Liquid Electrochemical Sensors (Pt/CNT 전극 기반 전기화학식 센서의 전해질에 따른 황화수소 감지 특성)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Soobeen baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.194-198
    • /
    • 2023
  • With the recent development of industrial technology, the problem of odor due to leakage of toxic gas discharged from industrial complexes is gradually increasing. Among them, hydrogen sulfide is a colorless representative odorous substance that can cause pain through irritation of the mucous membranes of the eyes and respiratory tract, and is a gas that can cause central nervous system paralysis and suffocation when exposed to high concentrations. Therefore, in order to improve the odor problem, research on a gas sensor capable of quickly and reliably detecting a leak of hydrogen sulfide is being actively conducted. A lot of research has been done on the existing metal oxide-based hydrogen sulfide gas sensor, but it has the disadvantage of requiring low selectivity and high temperature operating conditions. Therefore, in this study, a Pt/CNT-based electrochemical hydrogen sulfide gas sensor capable of detecting at low temperatures with high selectivity for hydrogen sulfide was developed. A working electrode capable of selectively detecting only hydrogen sulfide was fabricated by synthesizing Pt nanoparticles as a catalyst on functionalized CNT and applied to an electrochemical hydrogen sulfide gas sensor. It was confirmed that the manufactured Pt/CNT-based electrochemical hydrogen sulfide gas sensor has a current change of up to 100uA for hydrogen sulfide, and the both response time and recovery time were within 15 seconds.