• 제목/요약/키워드: Hydrogen Fueling Station

검색결과 27건 처리시간 0.019초

정량적 위험성평가 프로그램(Hy-KoRAM)을 이용한 제조식 수소충전소 피해범위 및 영향 분석 (Analysis of Damage Range and Impact of On-Site Hydrogen Fueling Station Using Quantitative Risk Assessment Program (Hy-KoRAM))

  • 김혜림;강승규
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.459-466
    • /
    • 2020
  • As the hydrogen industry grows, expansion of infrastructure for hydrogen supply is required, but the safety of hydrogen facilities is concerned due to the recent accidents at the Gangneung hydrogen tank and the Norwegian hydrogen fueling station. In this study, the damage range and impact analysis on the on-site hydrogen fueling station was conducted using Hy-KoRAM. This is a domestically developed program that adds functions based on HyRAM. Through this risk assessment, it was evaluated whether the on-site hydrogen fueling station meets international standards and suggested ways to improve safety.

수소충전소용 수소 충전 노즐의 고장 유형 및 영향분석 (A Study on Failure Mode and Effect Analysis of Hydrogen Fueling Nozzle Used in Hydrogen Station )

  • 김주현;조계용;지상원
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.682-688
    • /
    • 2023
  • In this paper, analyzes the type of failure and its effect on the hydrogen fueling nozzle used in hydrogen station. Failure of hydrogen fueling nozzle was analyzed using a qualitative risk assessment method, failure mode and effect analysis. The failure data of hydrogen fueling nozzles installed in domestic hydrogen stations are collected, and the failure types are classified, checked the main components causing the failure. Criticality analysis was derived based on frequency and severity depending on the failure mode performed. A quality function is developed by a performance test evaluation item of the hydrogen fueling nozzle, and the priority order of design characteristics is selected. Through the analysis results, the elements to improve the main components for enhancing the quality and maintenance of the hydrogen fueling nozzle were confirmed.

국내 수소충전소의 적정 용량 분석 (Study on the Optimum Capacity Analysis for Hydrogen Fueling Station in Korea)

  • 한자령;박진모;이영철;김상민;전소현;김형식
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.649-656
    • /
    • 2017
  • At present, hydrogen is emerging as a future energy source based on environment-friendly aspect, creation of new industry, and enhancement of domestic energy security. In accordance with it, the world's leading automobile companies are focusing on the development and commercialization of hydrogen electric vehicle technology, and each country is strengthening its hydrogen fueling station deployment strategy for its own country. Furthermore, the supply of hydrogen fueling stations is actively promoting under national support. More than 500 hydrogen fueling stations are being constructed, operated and planned around the world. The introduction of hydrogen energy is also progressing in Korea, by announcing road-map to supply hydrogen electric vehicles and hydrogen fueling stations by year. However, there is insufficient discussion on the capacity of hydrogen fueling station in Korea. Therefore, this study suggests the optimum capacity of hydrogen fuelling station for domestic hydrogen economy.

수소-LPG 복합충전소 정량적 위험성평가에 관한 연구 (A Study on the Quantitative Risk Assessment of Hydrogen-LPG Combined Refueling Station)

  • 강승규
    • 에너지공학
    • /
    • 제28권4호
    • /
    • pp.29-34
    • /
    • 2019
  • 본 연구에서는 수소 복합충전소에 대하여 정량적 위험성 평가를 실시하였다. 평가대상의 복합충전소는 수소-LPG이며 각 충전소의 설비 구성을 분석하고 위험도를 평가하였다. 최종 위험도는 피해영향과 사고빈도를 고려한 개인적 위험성과 사회적 위험성으로 평가한다. 본 연구의 대상이 된 수소-LPG 충전소에 대한 개인적 위험도 산출 결과, 수소-LPG 형태의 복합충전소는 HSE에서 제안하고 있는 허용 불가수준의 위험지역(> 1×10E-3)은 나타나고 있지 않으며, 작업자와 일반인에 대한 개인적 위험수준이 모두 허용범위 내에 분포하고 있다. 그리고 사회적 위험도 평가에서는 해석대상 모델이 허용 가능한 범위(ALARP, As Low As Reasonably Practicable)의 위험도 분포를 보이고 있다. 보다 향상된 안전성 확보를 위해 위험도 순위화 결과에서 높은 위험도를 보이고 있는 수소 저장용기, 디스펜서, 튜브트레일러 누출 및 LPG의 Vapour 회수 라인 등에 대한 정기적인 점검 및 확인을 권장한다.

지리정보시스템을 이용한 고속국도에서의 수소충전소 구축 방안 (A Construction Plan of Hydrogen Fueling Stations on Express Highways Using Geographic Information System)

  • 김봉진;국지훈;조상민
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.255-263
    • /
    • 2014
  • This paper deals with a construction plan of hydrogen fueling stations on express highways using geographic information system. We analyzed the existing hydrogen fueling stations and production facilities to construct the hydrogen supply system to satisfy the hydrogen demands. Also, we suggested the necessary number and locations of hydrogen fueling stations on express highways for operating fuel cell vehicles. As a result, we need to construct at least 6 hydrogen stations on express highways in 2020 and 14 hydrogen stations in 2025. In 2030, when fuel cell vehicles are expected to spread over the whole nation, 114 hydrogen stations are needed to construct on express highways. This study mainly utilized the information of distances between hydrogen production facilities and fueling stations. However, we need to analyze the other factors such as traffic and income data. Also, it is necessary to make a suitable construction plan of hydrogen fueling stations that should be constructed on each district using geographic information system.

R290 냉매를 이용한 수소 충전소 냉각시스템 엑서지 분석 및 공정 최적화 (Exergy Analysis and Optimization of Chiller System in Hydrogen Fueling Station Using R290 Refrigerant)

  • 현수빈;최정호
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.356-364
    • /
    • 2021
  • During the hydrogen fueling process, hydrogen temperature inside the compressed tank were limited below 85℃ due to the allowable pressure of tank material. The chiller system to cool compressed hydrogen used R407C, greenhouse gas with a high global warming potential (GWP), as a refrigerant. To reduce greehouse gas emission, it should be replaced by refrigerant with a low GWP. This study proposes a chiller system for fueling hydrogen with R290, consisted in propane, by applying the C3 pre-cooled system use d in the LNG liquefaction process. The proposed system consisted of hydrogen compression and cooling sections and optimized the operating pressure through exergy analysis. It was also compared to the exergy efficiency with the existing system at the optimal operating pressure. The result showed that the optimal operating pressure is 700 kPa in 2-stage, 840 kPa/490 kPa in 3-stage, and the exergy efficiency increased by 17%.

MC 기법을 이용한 수소 탱크 충전 성능 향상에 관한 연구 (A Study on the Improvement of Hydrogen Tank Fueling Performance Using MC Methods)

  • 최지아;지상원;장지성
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.447-455
    • /
    • 2023
  • SAE J2601, hydrogen fueling protocols, proposes two charging methods. The first is the table-based fueling protocol, and the second is the MC formula-based fueling protocol. Among them, MC formula-based fueling protocol calculates and supplies the target pressure and pressure ramp rate (PRR) using the pre-cooling temperature of the hydrogen and the physical parameters of the tank in the vehicle. The coefficient of the MC formula for deriving MC varies depending on the physical parameters of the tank in the vehicle. However, most studies use the MC coefficient derived from SAE J2601 as it is, despite the difference in the physical parameters of the tank applied to the study and the tank used to derive the MC coefficient from SAE J2601. In this study, the MC coefficient was derived by applying the hydrogen tank currently used, and the difference with the fueling performance using the MC coefficient proposed in SAE J2601 was verified. In addition, the difference was confirmed by comparing and analyzing the fueling performance of the table-based method currently used in hydrogen fueling stations and the MC formula-based method using MC coefficient derived in this study.

국내 저온수전해 수소생산의 경제성 평가 (Economic Evaluation of Domestic Low-Temperature Water Electrolysis Hydrogen Production)

  • 김봉진;김종욱;고현민
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.559-567
    • /
    • 2011
  • This paper deals with an economic evaluation of domestic low-temperature water electrolysis hydrogen production. We evaluate the economic feasibility of on-site hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ by the alkaline and the polymer electrolyte membrane water electrolysis. The hydrogen production prices of the alkaline water electrolysis, the polymer electrolyte membrane water electrolysis, and the steam methane reforming hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ were estimated as 18,403 $won/kgH_2$, 22,945 $won/kgH_2$, 21,412 $won/kgH_2$, respectively. Domestic alkaline water electrolysis hydrogen production is evaluated as economical for small on-site hydrogen fueling stations, and we need to further study the economic evaluation of low-temperature water electrolysis hydrogen production for medium and large scale on-site hydrogen fueling stations.

수소충전소의 경영안전성 강화를 위한 위험성평가 추가 항목 연구 (A Study on the Risk Assessment for Strengthening Management Safety of Hydrogen Fueling Station)

  • 이장원;김창수
    • 한국재난정보학회 논문집
    • /
    • 제18권3호
    • /
    • pp.520-531
    • /
    • 2022
  • 연구목적: 본 연구는 수소충전소의 위험성 평가를 바탕으로, 운영주의 주요 관심 사항인 수익성과 경영 위험성을 고찰함으로써 경영안전성 강화를 위한 방안을 찾고자 한다. 연구방법: 위험성 평가를 수소충전소의 설치단계부터 시간의 흐름에 따라 '수용 가능한 위험성'과 '허용 가능한 위험성'으로 구분하여 기존의 연구결과와 비교, 분석하였다. 연구결과: 수소충전소 설치단계에 실행하는 위험성 평가는 현재 기존의 연구가 적절하게 적용되고 있었다. 그러나 운영단계에서 발생 가능한 위험을 찾을 수 있었다. 즉 경영위험성에 대한 평가도 필요함을 도출하였다. 그리고 이를 통해 수소충전소의 안전성이 강화됨을 확인했다. 결론: 수소충전소 설치단계에 선행되는 위험성평가는 '수용 가능한 위험성' 평가로 모두 유의미한 결과가 도출되어 적절하게 활용되고 있다. 그러나 운영주는 운영단계에서 발생 가능한 위험, 즉 '허용 가능한 위험성' 평가와 대응방안 마련이 필요하다. 따라서 보다 안전한 수소충전소 구축과 운영을 위하여 경영위험성 평가 항목 추가를 제안한다.

동적 이용률을 고려한 수소충전소 사업의 경제성 분석 (An Economic Analysis of the Hydrogen Station Enterprise Considering Dynamic Utilization)

  • 김봉진
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.47-55
    • /
    • 2017
  • This paper deals with the after-tax economic feasibility analysis of the hydrogen fueling station considering dynamic utilization. We selected an off-site hydrogen station in which the hydrogen is supplied by a central by-product hydrogen plant as a case study. Also, we made some sensitivity analysis by changing input factors such as the discount rate, the hydrogen station construction cost, the hydrogen demand and the hydrogen sale price. As a result, the hydrogen station will not be economical in 2020 due to the relatively high price of the hydrogen station construction cost and the low price of hydrogen sale price. In order to realize the economic feasibility of the hydrogen station in the early stage of the hydrogen economy, the subsidies on the annual operating cost as well as the construction cost are needed.