• 제목/요약/키워드: Hydrogen Fuel Vehicle

검색결과 261건 처리시간 0.024초

유동해석에 의한 연료전지용 수소 재순환 블로워 개발 (Development of Hydrogen Recirculation Blower for Fuel Cell Vehicle by Flow Analysis)

  • 심창열;홍창욱;김영수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.684-689
    • /
    • 2005
  • Parametric calculation were conducted to estimate performance of variable geometry of hydrogen recirculation blower for fuel cell vehicle. The pressure rise and efficiency are effected by change of the geometric parameter of impeller and casing, and stripper clearance under various mass flow. Hydrodynamic performance were evaluated, and also the inner flow fields were investigated by CFD. Calculated results show good coincidence with experimental test results of total pressure performance. Performance of model designed by parametric calculations satisfied experimental data of verification model.

  • PDF

도로터널에서 수소차 위험에 관한 기초적 연구 (A basic study on the hazard of hydrogen feul cell vehicles in road tunnels)

  • 류지오;이후영
    • 한국터널지하공간학회 논문집
    • /
    • 제23권1호
    • /
    • pp.47-60
    • /
    • 2021
  • 수소는 차세대 에너지원으로서 수소경제 활성화 로드 맵에 따라 수소를 안정적으로 생산·저장·운송하기 위한 산업과 더불어 수소차의 보급이 급속도로 이루어질 것으로 예상된다. 이에 따라 터널과 같은 반밀폐공간에서의 수소차의 사고에 대비한 안전대책이 요구되고 있다. 본 연구에서는 도로터널에서 수소차량의 안전성을 확보하기 위한 연구의 일환으로 터널 내 수소차 사고에 따른 다양한 위험요인 중 가스 누출에 따른 화재와 폭발의 위험성에 대한 기초적인 조사·연구를 수행하였으며, 다음과 같은 결과를 얻었다. 수소차 사고 시 가스누출속도는 TPRD의 오리피스직경에 의존하며, 가스가 점화되는 경우에 최대화재강도는 오리피스직경에 따라 3.22~51.36 MW (오리피스직경: 1~4 mm)에 도달하나 지속시간이 짧기 때문에 화재로 인한 위험의 가중은 거의 없는 것으로 분석되었다. 등가 TNT방법에 의해서 폭발에 따른 과도압력을 계산하였으므로 폭발수율을 0.2적용하는 경우, 안전한계 거리는 대략 35 m 정도로 분석되고 등가사망자는 보수적인 관점에서 수십 명 정도에 달할 것으로 예측된다.

Fuel Cell Powered UAV with NaBH4 as a Hydrogen Source

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.579-582
    • /
    • 2008
  • PEM Fuel cell system was designed and constructed to use as a power source of unmanned aerial vehicles(UAV) in the present study. Sodium borohydride was selected as a hydrogen source and was decomposed by catalytic hydrolysis reaction. Fuel cell system consists of a fuel cell stack, a hydrogen generation system(HGS), and power management system(PMS). HGS was composed of a catalytic reactor, micropump, fuel cartridge, and separator. Hybrid power system between lithium-polymer battery and fuel cell was developed. The fuel cell system was integrated and packaged into a blended wing-body UAV. Energy density of the total system was 1,000 $W{\cdot}hr/kg$ and high endurance more than 5 hours was accomplished in the ground tests.

  • PDF

해외 수소에너지 정책 및 연구개발 프로그램 분석 (Analysis of the hydrogen energy policy and R&D program of foreign countries)

  • 강석훈;김종욱;홍종철
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.199-207
    • /
    • 2005
  • Hydrogen is getting more attention owing to the seriousness of air pollution and dependance on oil import, UNCCC(United Nations Convention on Climate Change) for reducing the emission of $CO_2$. This fact is not confined in a certain country but global recognition and several countries initiated R&D competition for commercializing the hydrogen fuel cell vehicle. Within 20${\sim}$30 years cost effective hydrogen production can be possible using fossil fuels because so much research is carried out up to now. But it is so far to produce the most of the hydrogen using renewable resources considering the present status of R&D and cost effectiveness. Several automobile companies planed for mass production of hydrogen vehicle by 2010 but changed or canceled the plan owing to the difficulty of R&D and the low status of infrastructure penetration. This paper surveyed the hydrogen energy policy, R&D program and commercialization strategy of advanced country, international agency, automobile and energy company to analyze the global status of R&D and policy. And the survey of R&D program is focused on the part of hydrogen production, storage, delivery and fuel cell.

장대터널에서 수소연료전지 차량의 수소 누출에 대한 수소 거동의 수치해석 연구 (A Numerical Analysis of Hydrogen Diffusion for Hydrogen Leakage from a Fuel Cell Vehicle in a Long Road Tunnel)

  • 최종락;허남건;이문규;장형진;이광범;용기중
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.588-597
    • /
    • 2012
  • In the present study, the dispersion characteristics of hydrogen leakage from a Fuel Cell Vehicle (FCV) were analyzed by numerical simulation in order to assess the risk of a hydrogen leakage incident in a long road tunnel. In order to implement the worst case of hydrogen leakage, the FCV was located at the center of a tunnel, and hydrogen was completely discharged within 63 seconds. The Leakage velocity of hydrogen was adopted sub-sonic speed because that the assumption of the blockage effect of secondary device inside a vehicle. The temporal and spatial evaluation of the hydrogen concentration as well as the flammable region in a road tunnel was reported according to change of ventilation operating conditions. The hydrogen was blended by supply air form a ventilation fan, however, the hydrogen was discharged to outside in the exhaust air. It is observed that the efficiency way to eliminate of hydrogen is supply air operating condition under the hazardous hydrogen leaking incident. The present numerical analysis can be provided useful information of ventilation under the hydrogen leaking situation.

연료전지 자동차의 주행성능 예측을 위한 전기자동차 및 연료전지의 성능실험과 수학적 모델링 (Measurements and Numerical Analysis of Electric Cart and Fuel Cell to Estimate Operating Characteristic of FCEV)

  • 조용석;김득상;안석종
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.65-72
    • /
    • 2006
  • In new generation vehicle technologies, a fuel cell vehicle becomes more important, by virtue of their emission merits. In addition, a fuel cell is considered as a major source to generate the electricity for vehicles in near future. This paper focuses on modeling of not only an electric vehicle and but also a fuel cell vehicle to estimate performances. And an EV cart is manufactured to verify the modeling. Speed, voltage, and current of the vehicle and modeling are compared to estimate them at acceleration test and driving mode test. The estimations are also compared with the data of the Ballard Nexa fuel cell stack. In order to investigate a fuel cell based vehicle, motor and fuel cell models are integrated in a electric vehicle model. The characteristics of individual components are also integrated. Calculated fuel cell equations show good agreements with test results. In the fuel cell vehicle simulation, maximum speed and hydrogen fuel consumption are estimated. Even though there is no experimental data from vehicle tests, the vehicle simulation showed physically-acceptable vehicle characteristics.

고농도 알코올 혼합 석유제품이 자동차 성능 및 배출가스에 미치는 영향 연구 (The Study on Effect of Emissions and Performance of a Conventional Vehicle using the High Concentration Alcohol Blended Petroleum Product)

  • 김성우;도진우;김기호;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.629-637
    • /
    • 2015
  • As concern about energy security and global warming many countries have been making effort to reduce fossil fuel. In the case of US, as one of the efforts, the standards of the alcohol vehicle fuels(including blended with gasoline) have been established. Alcohol is known that make some trouble concerning startability, durability and corrosion when using as fuel of a conventional vehicle. For these reason, alcohol usage needs not only the fuel standard, but also a modified car. In the case of Korea, although there are no the standard and the modified vehicle yet, high concentration alcohol blended fuel has being sold at illegal market. In this study, exhaust gas and performance of the conventional vehicle that alcohol(methanol and isopropyl alcohol) blends were fueled were measured to notify danger of using them without preparation of institutional arrangements. Also, to analyze correlation characteristics of the fuels and them, property test of the fuels was conducted. The test result show that bad-startability caused by low RVP and high T10 affected increase in NMOG and CO. NOx was increased under the highest short term fuel trim caused by high Oxygen content and low NHV of alcohol. According to increasing as alcohol content, fuel economy and acceleration ability were decreased but $CO_2$ was not significantly decreased.

연료전지 발전시스템을 이용한 축소형 철도차량 적용 선행연구 (The Feasibility Study on Small-scale Prototype Electric Railway Vehicle Application using Fuel Cell Generation System)

  • 정노건;장진영;창상훈;김재문
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.184-190
    • /
    • 2014
  • Fuel cell power system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. In recent years, railway field as well as mobile fuel cell power system is being studying actively with development of hydrogen storage technologies. This paper presents the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. it is confirmed that proposed fuelcell-battery hybrid system shows good response characteristic about speed and torque based on design of parameter on system. Also as results of response for proposed system modeling, it show that powering mode and braking mode of system is controlled by switching devices of converters.

국내 부생수소 현황과 수소 유통 인프라 (Status of Domestic Byproduct Hydrogen and Infrastructure)

  • 심규성;김종원;김정덕;황갑진;김흥선
    • 한국수소및신에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.330-338
    • /
    • 2002
  • A long-term energy system in the future is expected to be based on the ideal circulation system between water and hydrogen in the sense that the hydrogen prepared from water eventually returns to water again after its use. Currently, with respect to the hydrogen energy system, it is predicted that the turning-point at which the production cost of hydrogen will become to be lower than that of fossil fuels would be after 2010. However, fuel cell technology would be able to be practically used for the applications to the transportation vehicles and small-scale power sources from 2004, and therefore, an efficient construction of the infrastructure covering hydrogen production and supply systems would be required with short-/mid-term technologies for the $CO_2$ reduction associated with fossil fuel utilization. In this paper, the hydrogen quantity available in domestic market has been estimated focusing on the hydrogen by-produced from domestic industries, and also the infrastructure for hydrogen-driven vehicles like fuel cell cars has been reviewed.