• Title/Summary/Keyword: Hydrogen Engine

Search Result 361, Processing Time 0.022 seconds

Development of intelligent model to predict the characteristics of biodiesel operated CI engine with hydrogen injection

  • Karrthik, R.S.;Baskaran, S.;Raghunath, M.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.367-379
    • /
    • 2019
  • Multiple Inputs and Multiple Outputs (MIMO) Fuzzy logic model is developed to predict the engine performance and emission characteristics of pongamia pinnata biodiesel with hydrogen injection. Engine performance and emission characteristics such as brake thermal efficiency (BTE), brake specific energy consumption (BSEC), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide ($CO_2$) and nitrous oxides ($NO_X$) were considered. Experimental investigations were carried out by using four stroke single cylinder constant speed compression ignition engine with the rated power of 5.2 kW at variable load conditions. The performance and emission characteristics are measured using an Exhaust gas analyzer, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends (Diesel, B10, B20 and B30) and engine load conditions. Fuzzy logic model uses triangular and trapezoidal membership function because of its higher predictive accuracy to predict the engine performance and emission characteristics. Computational results clearly demonstrate that, the proposed fuzzy model has produced fewer deviations and has exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.99136 to 1 with experimental values. The developed fuzzy logic model has produced good correlation between the fuzzy predicted and experimental values. So it is found to be useful for predicting the engine performance and emission characteristics with limited number of available data.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

Effects of Intake Gas Mixture Cooling on Enhancement of The Maximum Brake Power in a 2.4 L Hydrogen Spark-ignition Engine (수소 내연기관의 흡기 냉각 방법에 따른 최고 출력 향상에 관한 연구)

  • Kim, Yongrae;Park, Cheolwoong;Oh, Sechul;Choi, Young;Lee, Jeongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • Since hydrogen has the lower minimum ignition energy than that of gasoline, hydrogen could be also appropriate for the IC engine systems. However, due to the low ignition energy, there might be a 'back-fire' and 'pre-ignition' problems with hydrogen SI(Spark-ignition) combustion. In this research, cooling effects of intake gas mixture on the improvement of the maximum power output were evaluated in a 2.4 L SI engine. There were two ways to cool intake gas mixtures. The first one was cooling intake fresh air by adjusting inter-cooler system after turbocharger. The other one was cooling hydrogen fuel before supplying by using heat ex-changer. Cooling hydrogen was performed under natural aspired condition. The result showed that cooling fresh air from 40 ℃ to 20~30 ℃ improved the maximum brake power up to 6.5~8.6 % and cooling hydrogen fuel as -6 ℃ enhanced the maximum brake power likewise.

A Study on Lean Combustion Characteristics with Hydrogen Addition in a Heavy Duty Natural Gas Engine (대형 천연가스엔진에서의 수소 첨가에 의한 희박연소특성 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Won, Sang-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its high thermal efficiency and lower harmful emissions, including $CO_2$. However, the possibility of partial burn and misfire makes the benefits of natural gas fueled engine worse under lean burn operation condition, Hydrogen addition can promote the combustion characteristics while reduces emissions extremely. In this study, the effect of hydrogen addition on an engine performance was investigated. The results showed that thermal efficiency was increased due to the expansion of lean operation range under stable operation. NOx emission can be significantly reduced with the small increase in HC or CO emissions.

Design and Cold Flow Test of a Multi-injector Engine using Hydrogen Peroxide/Kerosene (과산화수소/케로신을 이용한 다중 분사기 엔진 설계 및 수류 실험)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2012
  • Multi-injector rocket engine using high-concentrated hydrogen peroxide and kerosene was designed and manufactured. Design requirements of a rocket engine were determined and main geometrical parameters of rocket engine were determined on the basis of fundament. Six coaxial swirl injectors were mounted on the multi-injector engine. Flow analysis in the hydrogen peroxide manifold was performed to minimize stagnation and recirculation zones. Finally, the optimized hydrogen peroxide manifold was manufactured and cold flow test was carried out to confirm mass flow rate per uni-element, spray pattern and atomization characteristics. The results of cold flow test showed that the mixing head design process was successful and enough to use as a essential database for the development of a full-scale engine.

Effects of Hydrogen Ratio on Combustion and Emissions Characteristics of Hydrogen/Diesel Dual-Fuel Engine (수소의 혼합 비율에 따른 수소/디젤 혼소 엔진의 연소 및 배기 특성 파악)

  • Park, Hyunwook;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.103-106
    • /
    • 2014
  • The effects of hydrogen ($H_2$) ratio on combustion and emission characteristics in a $H_2/diesel$ dual-fuel engine were investigated. Dual-fuel strategy was applied to improve the control of combustion phasing. The combustion phasing was retarded with increasing $H_2$ fraction. This can be explained by both reduced diesel concentration and chemical effect of $H_2$, which reduce the heat release rate during the low temperature reaction stage. Hydrocarbon and carbon monoxide emissions of the engine were decreased drastically when $H_2$ ratio was increased.

  • PDF

Flow visualization used PIV of hydrogen fueled free piston engine with uni-flow scavenging (PIV를 이용한 Uni-flow 소기방식 프리피스톤 수소기관의 실린더내 유동가시화)

  • Cho, H.W.;Yoon, J.S.;Lee, J.T.;Lim, H.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • In order to improve scavenging performance of free piston hydrogen fueled engine, this study estimate compatibility of uni-flow scavenging. The scavenging flow characteristics in the cylinder is investigated by flow visualization and PIV method. Consequently it has been found that the scavenging performance decreased with abnormal expansion of piston and delay of the exhaust valve opening timing. And the scavenging performance of exhaust valve located center in cylinder head is better than that of exhaust valve located side in cylinder head.

Starting operation of a linear generator driven by a hydrogen engine (수소연소 선형 발전기의 초기 기동)

  • Jeong, Seung-Gi;Kim, Kyung-Su;Choi, Jun-Young;Oh, Si-Doek
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.110-112
    • /
    • 2008
  • A linear generator driven by a hydrogen combustion engine has been developed. Unlike rotary engine-generator systems, the linear counterpart is inherently unable to start by itself unless external force is provided for initial compression/ignition cycle. When the generator is connected to utility power lines through a bidirectional power conversion system, however, the self start-up can be done by driving the generator as a motor. This paper introduces a prototype 1kW linear hydrogen engine-generator system being developed and shows the self start-up is possible with proper motoring mode.

  • PDF

EFFICACY OF HAND REAMER AND ENGINE REAMER TO PREPARE ROOT CANAL (수동(手動)리머와 전동(電動)리머의 근관형성효과(根管形成效果))

  • Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 1984
  • This experimental study was made to evaluate the efficacy of root canal preparation of engine reamer versus hand reamer. Eighty extracted human teeth were prepared with the following treatments and devided into 4 groups; Group 1: Canal preparation with hand reamer, and irrigation with normal saline solution. Group 2: Canal preparation with engine reamer, and irrigation with normal saline solution. Group 3: Canal preparation with hand reamer, and irrigation with 3% hydrogen peroxide and 3.5% sodium hypochlorite solution. Group 4: Canal preparation with engine reamer, and irrigation with 3% hydrogen peroxide and irrigation with 3% hydrogen peroxide and 3.5% sodium hypochlorite solution. After decalcification, 5p. sections at levels 1-, 3-, and 5-mm from the apex were evaluated microscopically. The results were as follows; The effectiveness of hand reamer and engine reamer were equal in preparing the root canal at all levels from the apex, and were equal in normal saline solution groups, and 3% $H_2O_2$ and 3.5% NaOCl solution groups. Both in hand reaming groups and in engine reaming groups, some canal walls had still untouched portion, and canal irregularities and debris were still remained.

  • PDF

An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine (수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, JEONGSOO;Lee, Seong-Uk;KIM, SUNMOON
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.