• 제목/요약/키워드: Hydrogen Electric Vehicle

검색결과 115건 처리시간 0.027초

창원 수소충전소의 수소판매량 분석 (Analysis of Hydrogen Sales Volume in Changwon)

  • 강부민;강영택;이상현;김남석;이경은;박민주;정창훈;정대운
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.356-361
    • /
    • 2019
  • Since the government announced the roadmap to revitalize the hydrogen economy, we are constantly making the effort to expand the use of fuel cell electric vehicles (FCEV) and hydrogen charging stations. There is however a significant issue to build and operate the hydrogen charging station due to the lack of the profit model. Many researchers believe that the supply of FCEV will be increased in the near future and finally ensure the economy of hydrogen charging stations. This study shows that the sales changes of hydrogen gas and consumption patterns by the operation of the hydrogen charging station in Changwon City. The results will be used as the evidence to support for operating the hydrogen charging station by private businesses and the validity of additional establishment of hydrogen charging stations.

수소전기차 기술 개발 및 보급 정책 동향 (R&D Technology and Dissemination Policy and of FCEV)

  • 김명환
    • 공업화학전망
    • /
    • 제24권4호
    • /
    • pp.22-35
    • /
    • 2021
  • 현재 수소전기차는 승용 및 상용 등 다양한 모빌리티 분야에서 전 세계적으로 이슈가 되고 있다. 환경규제 강화, 신기후체제 출범 등의 변화의 물결에 따라 자동차산업의 패러다임이 친환경으로 전환되고 있으며, 세계적으로 관련 기술 개발 및 보급을 위한 확대 정책이 발표되고 있다. 1990년 초 수소전기차(Fuel Cell Electric Vehicle, FCEV) 기술 개발이 진행되어 1994년 독일 다임러사가 세계 최초로 NECAR1을 개발하였다. 이후 많은 완성차가 상용화를 위해 기술개발이 진행되었으며, 2013년 국내 현대차가 세계최초로 양산차인 투싼 ix 수소전기차를 출시하였다. 1년 이후 다시 일본 도요타에서 세계 최초로 전용 차체를 적용한 미라이 수소전기차가 출시되면서 초기시장이 형성되었으며, 이후 현대차는 NEXO를 2018년에 발표하였다. 전 세계적으로 가장 많이 팔린 수소전기차에 해당된다. 2021년 미라이 2세대가 더욱 진보된 기술을 바탕으로 출시되었으며, 국내 현대차에서도 2세대 수소전기차 출시를 앞두고 있다. 또한 수소승용차 뿐만 아니라 수소상용차 시장이 뜨겁게 부각되고 있으며, 각국에서 수소상용차 기술개발을 진행하고 있다. 본 기획특집에서는 각국의 수소전기차 기술개발 및 보급 정책을 소개하고 국내 기술개발 및 보급 정책의 타당성을 확인하고자 하였다.

시장수요예측 모델을 활용한 서울시 수소차 충전시설의 입지선정 우선순위에 관한 연구 (A Study on the Priority of Site Selection for Hydrogen Vehicle Charging Facilities in Seoul Using a Market Demand Prediction Model)

  • 김진식;장국진;이주연;정명석
    • 시스템엔지니어링학술지
    • /
    • 제18권2호
    • /
    • pp.140-148
    • /
    • 2022
  • Hydrogen is expected to be widely applied in most sectors within the current energy system, such as transportation and logistics, and is expected to be economically and technologically utilized as a power source to achieve vehiclebon emission reduction. In particular, the construction of hydrogen charging station infrastructure will not only support the distribution of hydrogen electric vehicles, but also play an important role in building a hydrogen logistics system. Therefore, This paper suggest additional charging infrastructure areas in Seoul with a focus on supply according to the annual average growth rate (CAGR), centering on Seoul, where hydrogen vehicles are most widely distributed. As of February 2022, hydrogen charging infrastructures were installed in Gangseo-gu, Gangdong-gu, Mapo-gu, Jung-gu, and Seocho-gu in downtown Seoul. Next, looking at the number of hydrogen vehicles by administrative dong in Seoul from 2018 to 2022, Seocho-gu has the most with 246 as of 2022, and Dongjak-gu has the highest average growth rate of 215.4% with a CAGR of 215.4%. Therefore, as a result of CAGR analysis, Dongjak-gu is expected to supply the most hydrogen vehicles in the future, and Seocho-gu currently has the most hydrogen vehicles, so it is likely that additional hydrogen charging infrastructure will be needed between Dongjak-gu and Seocho-gu.

유한요소법을 이용한 FCEV용 체크밸브의 열간 단조 공정 해석 (Analysis of Hot Forging Process of Check Valve in FCEV using Finite Element Method)

  • 정동환;송현정;이창훈;이승범;김지훈;손근주;조해용
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.100-107
    • /
    • 2021
  • The use of new and renewable energy is essential to solve the problem of increasing fossil fuel use due to industrial development. The paradigm of the automobile industry has changed due to the strengthening of environmental regulations in developed countries, and the development of eco-friendly cars is underway. Fuel cell electric vehicles (FCEVs), which use hydrogen as fuel, require strict standards for fuel-related components. In particular, check valves for FCEV control high-pressure hydrogen and thus, must be sufficiently strong for the challenging environment caused by high-pressure hydrogen. Therefore, this study used DEFORM 3D, a regular finite element analysis program, to check the moldability of check valves for FCEV, design the process, verify reliability through single streamline analysis, tensile tests, and ANSYS simulations, and identify suitable materials for the high-pressure hydrogen environment.

수소 잔존 용량에 따른 수소 탱크 충전 시간 및 온도 변화 예측 (Prediction of Changes in Filling Time and Temperature of Hydrogen Tank According to SOC of Hydrogen)

  • 이현우;오동현;서영진
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.345-350
    • /
    • 2020
  • Hydrogen is an green energy without pollution. Recently, fuel cell electric vehicle has been commercialized, and many studies have been conducted on hydrogen tanks for vehicles. The hydrogen tank for vehicles can be charged up to 70 MPa pressure. In this study, the change in filling time, pressure, and temperature for each hydrogen level in a 59 L hydrogen tank was predicted by numerical analysis. The injected hydrogen has the properties of real gas, the temperature is -40℃, and the mass flow rate is injected into the tank at 35 g/s. The initial tank internal temperature is 25℃. Realizable k-epsilon turbulence model was used for numerical analysis. As a result of numerical analysis, it was predicted that the temperature, charging time, and the mass of injected hydrogen increased as the residual capacity of hydrogen is smaller.

수소연료전지 자동차의 수소밸브용 알루미늄 합금의 수소취화에 의한 기계적 특성에 미치는 CrN과 TiN 코팅의 영향 (Effects of CrN and TiN Coating by Hydrogen Embrittlement of Aluminum Alloys for Hydrogen Valves of Hydrogen Fuel Cell Vehicles on Mechanical Properties)

  • 허호성;신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.232-241
    • /
    • 2023
  • The mechanical properties of the hydrogen valve responsible for supplying and blocking hydrogen gas in a hydrogen fuel cell electric vehicle (FCEV) were researched. Mechanical properties by hydrogen embrittlement were investigated by coating chromium nitride (CrN) and titanium nitride (TiN) on aluminum alloy by arc ion plating method. The coating layer was deposited to a thickness of about 2 ㎛, and a slow strain rate test (SSRT) was conducted after hydrogen embrittlement to determine the hydrogen embrittlement resistance of the CrN and TiN coating layers. The CrN-coated specimen presented little decrease in mechanical properties until 12 hours of hydrogen charging due to its excellent resistance to hydrogen permeation. However, both the CrN and TiN-coated specimens exhibited deterioration in mechanical properties due to the peeling of the coating layer after 24 hours of hydrogen charging. The specimens coated at 350 ℃ presented a significant decrease in ultimate tensile strength due to abnormal grain growth.

무인 멀티콥터에 적용된 60마력급 직립형 가솔린 엔진의 성능 분석 (A Performance Analysis of 60 Horsepower Vertical Mounted Gasoline Engine Applied to Multi-copter of Unmanned Aircraft Vehicle)

  • 김륜경;고경완;권성기;박계춘
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.758-766
    • /
    • 2023
  • Multi-copter of unmanned aerial vehicle (UAV) was initially developed as strategic technology in the only military field, but it is developing into an industrial field with a wide range of applications in the civil sector based on the development and convergence of aviation technology and information and communication technology. Currently, the degree of utilization of multi-copter is increasing in various industries for the purpose of performing classic tactical missions, logistics transportation, farm management, internet supply, video filming, weather management, life-saving, etc, and active technology development responding to market demand. Existing commercial multi-copter mainly use an electric energy propulsion system consisting of an electric battery and a brushless direct current (BLDC) motor. It is the limitations for usage in the flying time (up to 20 minutes) and payload (less than 20 kg). this study aims to overcome these limitations and expand the commercialization of engine-powered multi-copter of UAV in various industries in the futures.

수소연료전지 자동차 열관리 시스템의 상호 영향도 분석을 위한 실험적 연구 (Experimental Study on the Mutual Influence of Thermal Management System for Hydrogen Fuel Cell Vehicle)

  • 이무연;원종필;조중원;이호성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.852-858
    • /
    • 2011
  • This paper is aiming to estimate the mutual influence of the stack cooling performances with the operation modes of the thermal management system for the hydrogen fuel cell vehicles. The heat capacity of the thermal management system was measured by varying the operating modes such as stack cooling heat exchanger only (Mode 1), stack cooling and electric devices cooling heat exchangers (Mode 2), and stack cooling and electric devices cooling heat exchangers with an operation of the condenser (Mode 3).As the results, Performance of the thermal management system (TMS) at Mode 3 decreased up to 34.0%, compared with the result of the Mode 1. In addition, in order to optimize the performance of TMS, the entropy change of stack cooling heat exchanger using irreversibility analysis technique was analyzed with the relationship between entropy generation and entering air velocity of the thermal management system.

수소충전소용 프리쿨러를 위한 수소가스 냉각에 관한 연구 (Study on Cooling of Hydrogen Gas for the Pre-Cooler in the Hydrogen Refueling Station)

  • 이경한;구경모;유철휘;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.237-242
    • /
    • 2019
  • In the hydrogen refueling station (HRS), it is need the pre-cooling system (PCS) to limit the inside temperature ($85^{\circ}C$) of the onboard thank (700 bar) and to charge the hydrogen at short time (within 3 minutes) to fuel cell electric vehicle (FCEV). From those safety reasons, the temperature of hydrogen gas must be controled $-33^{\circ}C$ to $-40^{\circ}C$ in PCS. The cooling test of the gaseous ($N_2$, He, $H_2$) was carried out using heat exchanger (pre-cooler) by indirect cooling and direct cooling method. It was confirmed that the temperature of hydrogen gas had below $-40^{\circ}C$ at below $-75^{\circ}C$ of chiller temperature in direct cooling.

수소전기차용 EPDM 고무의 충전재 입자 크기별 고압 수소 환경에서의 거동 연구 (Influence of Filler Particle Size on Behaviour of EPDM Rubber for Fuel Cell Vehicle Application under High-Pressure Hydrogen Environment)

  • 김기정;전형렬;강영임;김완진;염지웅;최성준;조성민
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.453-458
    • /
    • 2020
  • In this study, ethylene-propylene-diene monomer (EPDM) rubbers reinforced with various particle size of carbon black were prepared and tested. We followed recently published CSA/ANSI CHMC2 standard "the test methods for evaluating material compatibility in compressed hydrogen applications-polyemr". Measurement of change in hardness, tensile strength and volume were performed after exposure to maximum operating pressure, 87.5 MPa, for 168 hours (1 week). Once EPDM was exposed to high-pressure hydrogen, the samples experience volume increase and degradation of the physical properties. Also, after the dissolved hydrogen was fully eliminated from the specimens, the hardness and the tensile properties were not recovered. The rubber reinforced with smaller sizes of carbon black particles showed less volume expansion and decrease of physical properties. As a result, smaller particle size of carbon black filler led to more resistance to high-pressure hydrogen.