• Title/Summary/Keyword: Hydrogen Charging

Search Result 181, Processing Time 0.023 seconds

Micro-Hardnesses and Microstructural Characteristics of Surface Layer of 590MPa DP Steels According to Hydrogen Charging (수소주입에 따른 590 MPa급 DP강 표면층의 미소경도와 조직특성)

  • Kang, Kae-Myung;Park, Jae-Woo
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.581-585
    • /
    • 2010
  • High strength sheet steels for automobile are seriously compromised by hydrogen embrittlement. This issue has been continuously studied, but the field of interest, which lies between microstructural characteristics and hydrogen behavior with hydrogen charging, has not yet been thoroughly investigated. This study was done to investigate the behavior of hydrogen according to the hydrogen volume fraction on 590MPa grade DP steels, which are developed under hydrogen charging conditions as high strength sheet steels for automobiles. The penetration depths and the mechanical properties, according to charging conditions, were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. It was found that the amount of hydrogen trapping in 590MPa DP steels was related to the austenite volume fraction. It was confirmed that the distribution of micro-hardnesses according to the depth of the subsurface zone under the free surface showed the relationship of the depth of the hydrogen saturation between the charging conditions.

Evaluation of Hydrogen Embrittlement of High Strength Steel for Automobiles by Small Punch Test (소형펀치시험을 이용한 자동차용 고강도강 수소취성 평가)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • The hydrogen embrittlement of high strength steel for automobiles was evaluated by small punch (SP) test. The test specimens were fabricated to be 5 series, having various chemical compositions according to the processes of heat treatment and working. Hydrogen charging was electrochemically conducted for each specimen with varying of current density and charging time. It was shown that the SP energy and the maximum load decreased with increasing hydrogen charging time in every specimen. SEM investigation results for the hydrogen containing samples showed that the fracture behavior was a mixed fracture mode having 50% dimples and 50% cleavages. However, the fracture mode of specimens with charging hydrogen changed gradually to the brittle fracture mode, compared to the mode of other materials. All sizes and numbers of dimples decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause of fracture for high strength steels for automobiles; also, it is shown that the small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels for automobiles.

Machine Learning-based hydrogen charging station energy demand prediction model (머신러닝 기반 수소 충전소 에너지 수요 예측 모델)

  • MinWoo Hwang;Yerim Ha;Sanguk Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.47-56
    • /
    • 2023
  • Hydrogen energy is an eco-friendly energy that produces heat and electricity with high energy efficiency and does not emit harmful substances such as greenhouse gases and fine dust. In particular, smart hydrogen energy is an economical, sustainable, and safe future smart hydrogen energy service, which means a service that stably operates based on 'data' by digitally integrating hydrogen energy infrastructure. In this paper, in order to implement a data-based hydrogen charging station demand forecasting model, three hydrogen charging stations (Chuncheon, Sokcho, Pyeongchang) installed in Gangwon-do were selected, supply and demand data of hydrogen charging stations were secured, and 7 machine learning and deep learning algorithms were used. was selected to learn a model with a total of 27 types of input data (weather data + demand for hydrogen charging stations), and the model was evaluated with root mean square error (RMSE). Through this, this paper proposes a machine learning-based hydrogen charging station energy demand prediction model for optimal hydrogen energy supply and demand.

Hydrogen Embrittlement Evaluation of Subsurface Zone in 590DP Steel by Micro-Vickers Hardness Measurement (미소경도 측정에 의한 590DP강 Subsurface Zone 내 수소취성 평가)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.581-586
    • /
    • 2011
  • This study describes a hydrogen embrittlement evaluation of the subsurface zone in 590DP steel by micro-Vickers hardness measurement. The 590DP steel was designed to use in high-strength thin steel sheets as automotive materials. The test specimens were fabricated to 5 series varying the chemical composition through the process of casting and rolling. Electrochemical hydrogen charging was conducted on each specimen with varying current densities and charging times. The relationship between the embrittlement and hydrogen charging conditions was established by investigating the metallography. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of the subsurface zone in addition to the microscopic investigation. The micro-Vickers hardness increased with the charging time at the surface. However, the changing ratio and maximum variation of hardness with depth were nearly the same value for each test specimen under the current density of 150 mA/$cm^2$ and charging time of 50 hours. Consequently, it appears that hydrogen embrittlement in 590DP steel can be evaluated by micro-Vickers hardness measurement.

Effect of Annealing Treatment on Microstructure and Hydrogen Embrittlement of Ti-6Al-4V Alloys Subject to Electrochemical Hydrogen Charging (전기화학적 수소 주입에 의한 Ti-6Al-4V 합금의 미세조직과 수소 취성에 미치는 어닐링 처리의 영향)

  • Ko, S.W.;Lee, J.M.;Kwon, Y.N.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.211-217
    • /
    • 2020
  • This paper presents a study on the hydrogen embrittlement of Ti-6Al-4V alloys with different microstructures depending on annealing treatment. They were electrochemically charged with hydrogen and subjected to tensile tests to investigate hydrogen embrittlement behavior. Tensile test results showed that the elongation of Ti-6Al-4V alloy specimens was remarkably decreased with increasing the volume fraction of β phase after hydrogen charging. This is because the β phase with a relatively low diffusivity tends to easily form a hydride at grain boundaries during electrochemical hydrogen charging. After hydrogen charging of the Ti-6Al-4V alloy specimen, it found that silver particles were decorated mostly at the grain boundary, and coarser silver particles were usually formed in the specimen annealed at 950 ℃. Therefore, the specimen having higher β phase fraction shows a poor hydrogen embrittlement resistance because the β phase promotes the formation of coarse hydride during electrochemical hydrogen charging, which leads to a large decrease in ductility.

The Influence of Hydrogen Charging with the Volume Fraction of Phases in Dual Phase Steels (다상조직강의 조직 분율에 따른 수소주입의 영향)

  • Kim, Han-Sang;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.284-288
    • /
    • 2012
  • A study on microstructure control of multi-phase steel have been implemented to higher strength with improved formability. However, it is well known that the high strength of steel are susceptible to hydrogen embrittlement. The mechanisms of hydrogen embrittlement is caused by complex interactions. In this paper, the test specimens were fabricated to 5 type of 590DP steels at different levels of volume faction. The hydrogen charging was conducted by electrochemical hydrogen-charge method with varying charging time. The relationship between hydrogen concentration and volume fraction of 590DP steel was established by SP test and SEM-fractography. It was shown that the hydrogen amounts charged in 590DP steels increased with increasing the volume faction of austenite. The maximum loads of the 590DP steels in SP test were sharply decreased with increasing hydrogen charging time. The results of SEM-fractography investigation showed typical brittle-fracture surfaces for hydrogen-charged 590DP steels.

Hydrogen Embrittlement Properties of SA-723 steel via controlling Gaseous Hydrogen Pre-charging Condition (가스 수소 장입 조건 제어를 통한 SA-723 강의 수소 취화 특성 평가)

  • Kangjin Lee;Jeonghwan Kim;Hwayoung Lee;Dohoon Kim;Soonjik Hong;Gian Song
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.382-388
    • /
    • 2023
  • In this study, hydrogen embrittlement (HE) behavior of a SA-723 steel via controlling gaseous hydrogen pre-charging condition has been analyzed. The gaseous hydrogen charging of the SA-723 steel was performed under a constant pressure of 20 MPa of gaseous H2 at 150℃ and 300℃ for 2 and 6h, and TDS, SSRT and Charpy tests were conducted to analyze the hydrogen embrittlement (HE) behavior of the SA-723 steel. Furthermore, prior to commencing the test, these specimens were coated with Zn to prevent hydrogen from diffusing out of a specimen during the tests. The TDS results showed that the 300℃-6h and 150℃-6h charged steels contain larger amounts of hydrogen than 300℃-2h and 150℃-2h charged steel. The SSRT and Charpy test results also showed the similar trends that the mechanical properties of the steels deteriorate as the amount of hydrogen charged in the steel increases. Therefore, this study suggests that, for SA-723 steel, the charging time parameter is more effective to charge more amount of hydrogen into SA-723 steel, rather than the charging temperature.

The Effect of Hydrogen on the Variation of Properties at the Surface Layers of 590 MPa DP Steels Charged with Hydrogen (수소장입시킨 590 MPa DP강의 표면층 물성변화에 관한 수소의 영향)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.126-132
    • /
    • 2013
  • It was investigated that the effects of hydrogen charging on the properties of 590 MPa Dual Phase(DP) steels at the surface layers. The hydrogen-charging time was changed from 5 to 50 hours and current densities from 100, 150, and 200 $mA/cm^2$, respectively. It was found that the hydrogen content in the specimen was increased with as the charging time and the current density. The microvickers hardness of the subsurface zone was increased from 215.3 HV to 239.5 HV due to the increase in current density and charging time. The comparison of the absorbed energies tested by a small-punch (SP) test showed that the absorbed energy of the specimen was greatly reduced from 436 to 283 $kgf-mm^2$ because of hydrogen embrittlement. It was confirmed that bulb aspects of fracture surface became more brittle with increasing hydrogen content.

Hydrogen Embrittlement Properties of Austenitic Fe-30Mn-0.2C(-1.5Al) High-Manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.283-289
    • /
    • 2018
  • This present study deals with the hydrogen embrittlement properties of austenitic Fe-30Mn-0.2C(-1.5Al) high-manganese steels for cryogenic applications. They were electrochemically charged with hydrogen and then subjected to tensile tests for evaluating hydrogen embrittlement behavior. Tensile test results showed that after hydrogen charging the tensile strength and elongation of the Al-free steel were more remarkably decreased with increasing current density when compared to the Al-added steel. After hydrogen charging of the Al-added steel, it was found that the measured hydrogen content was small and silver particles were relatively less decorated. Therefore, the Al-added steel has a superior hydrogen embrittlement resistance to the Al-free steel because the addition of Al suppresses the injection of hydrogen during electrochemical hydrogen charging.

Hydrogen Delayed Fracture of TRIP Steel by Small Punch Test (소형펀치시험에 의한 TRIP강의 수소 지연파괴 거동)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • The strain-induced phase transformation from austenite to martensite is responsible for the high strength and ductility of TRIP steels. However high strength steels are susceptible to hydrogen embrittlement. This study aimed to evaluate the effects of hydrogen on the behavior of hydrogen delayed fracture in TRIP steel with hydrogen charging conditions. The electrochemical hydrogen charging was conducted at each specimen with varying current density and charging time. The relationship between hydrogen concentration and mechanical properties of TRIP steel was established by SP test and SEM fractography. The maximum loads and displacements of the TRIP steel in SP test decreased with increasing hydrogen charging time. The results of SEM fractography investigation revealed typical brittle mode of failure. Thus it was concluded that hydrogen delayed fracture in TRIP steel result from the diffusion of hydrogen through the ${\alpha}$' phase.