• Title/Summary/Keyword: Hydrofluoric acid-Nitric acid compound

Search Result 3, Processing Time 0.022 seconds

Anodizing Behavior and Silicides Control in Al-Si Alloy System (Al-Si 합금의 양극산화거동 및 규소화합물 제어)

  • Park, Jong Moon;Kim, Ju Seok;Kim, Jae Kwon;Kim, Su Rim;Park, No Jin;Oh, Myung Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • The anodic oxidation behavior of Si-containing aluminum alloy for diecasting was investigated. Especially, the property changes during anodization both on aluminum 1050 and 9 weight percentage silicon containing aluminum (Al-9Si) alloys were analyzed by the static current test. In order to fabricate a uniform anodic oxidation film by effect of Al-Si compound, nitric acid containing hydrofluoric acid had been used as a desmutter for aluminum alloy after alkaline etching. It was found that the level of voltage of Al-9Si alloy during the static current test was almost as double as higher than aluminum 1050 through anodization. By adding hydrofluoric acid in the nitric acid electrolyte, the silicon compound on the surface was removed, and the optimum amount of added hydrofluoric acid could be derived. It was also observed that the size of silicon compound formed on the surface could be refined by heat treatment at $500^{\circ}C$ and followed water quenching.

Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements

  • Cho, Jin Hyung;Kim, Sun Jai;Shim, June Sung;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2017
  • PURPOSE. The aim of this study was to compare the surface roughness of zirconia when using Zircos E etching system (ZSAT), applying a nitric acid-hydrofluoric acid compound as a pretreatment agent, and also to compare the shear bonding strength according to different resin cements. MATERIALS AND METHODS. ZSAT, air abrasion, and tribochemical silicacoating were applied on prepared 120 zirconia specimens (10 mm in diameter, 7 mm in height) using CAD/CAM. Each 12 specimens with 4 different resin cements (Panavia F 2.0, Rely X Unicem, Superbond C&B, and Hot bond) were applied to test interfacial bond strength. The statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The results are as follows: after application of the ZSAT on the zirconia specimens, surface roughness value after 2-hour etching was higher than those after 1- and 3-hour etching on SEM images. RESULTS. For Superbond C&B and Rely X Unicem, the specimens treated with ZSAT showed higher shear bond strength values than those treated with air abrasion and tribochemical silicacoating system. Regarding the failure mode of interface over cement and zirconia surface, Rely X Unicem and Hot bond showed cohesive failures and Panavia F 2.0 and Superbond C&B showed mixed failures. CONCLUSION. Zircos E etching system in zirconia restoration could increase its shear bond strength. However, its long term success rate and clinical application should be further evaluated.

Study on Recovery of Separated Hydrofluoric Acid, Nitric Acid and Acetic Acid Respectively from Mixed Waste Acid Produced during Semiconductor Wafer Process (반도체 웨이퍼 제조공정(製造工程) 중 발생혼합폐산(發生混合廢酸)으로부터 불산, 질산 및 초산의 각 산 회수(回收)에 관한 연구(硏究))

  • Kim, Ju-Yup;Kim, Hyun-Sang;Bae, Woo-Keun
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.62-69
    • /
    • 2009
  • We researched separation of mixed waste acids with HF, $CH_3COOH$, $HNO_3$ that were produced during a semiconductor wafer process to recycle these acids. At first, we manufactured the fluoride compound in form of $Na_2SiF_6$ by precipitating HF using $NaNO_3$ and Si powder. The concentration of HF was reduced from the initial concentration of 127 g/L to 0.5 g/L with an HF recovery ratio of 99.5%. After the manufacture of $Na_2SiF_6$, the concentration of $HNO_3$ and $CH_3COOH$ demonstrated 502 g/L and 117 g/L respectively. Following these findings we added NaOH in this $CH_3COOH/HNO_3$ mixed acid in order to obtain pH=4. Next we separated the $CH_3COOH$ and recoverd it through the use of vaccum evaporation at -440 mmHg, $95^{\circ}C$. The concentration of the recovered $CH_3COOH$ was approximately 15% and the recovery ratio of $CH_3COOH$ was over 85%. We precipitated the $NaNO_3$ by cooling the concentrated solution to $20^{\circ}C$ with a $HNO_3$ recovery ratio of over 93%. We confirmed that only $Na_2SiF_6$ and $NaNO_3$ were manufactured by XRD analysis after drying these precipitants at $90^{\circ}C$. The precipitants demonstrated a purity of approximately 97% and 98% respectively. Therefore, the purity of the precipitants proved to be similar to that of commercial products.