• Title/Summary/Keyword: Hydrodynamic resistance

Search Result 158, Processing Time 0.024 seconds

A Study on Floating Collar of Dragged Gears (인망그물의 부양깃판에 관하여)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 1986
  • In order to improve the net-mouth height of dragged gears, the authors devised models of floatingcollars of nylon cloth instead of floats and experimented with 4 types-A type (length 65em, breadth 3em), B type (length 65em, breadth 4em), C type (length 65em, breadth 5em) and D type (length 65 em, breadth 6em) attached respectively to the front edge of square of a model net after preliminary experimentation. These various types of floating collars were experimented in a circulating water channel to evaluate the characteristics of net-mouth height and hydrodynamic resistance and the effect of the length of bridles were also examined. The results obtained were as follows: 1. In case of attaching floats, the model net-mouth height reduced from 80 em to 20 em when current velocity was increased from 0.25m/see to 1m/sec. 2. In case of attaching floating collars, the model net-mouth heights were maintained 70 em, 71 em, 80 em, 78 em in maximum and 55 em, 63 em, 69 em, 73 em in minimum respectively even the current volocity was increased from 0.25 m/see to 1 m/see. 3. The model net-mouth height was reduced to 10 em maximum according to the current velocity and types of floating collars when the bridles were shortened 3~4 mm in length. 4. Hydrodynamic resistance of D type only was increased to 700 g in maximum and those of A, B, C type were reduced to 460 g in maximum at current velocity beyond 0.5 m/ see when bridles were shortened 3-4 mm in length. 5. But the model net-mouth heights became higher in accordance with breadth of floating coliars, B type was the best for this model net in case that hydrodynamic resistance was taken into account.

  • PDF

Development of a low energy used anchovy dragnet using a numerical method (수치해석기법을 이용한 에너지 저소비형 기선권현망어구 개발)

  • Yang, Yong-Su;Lee, Chun-Woo;Lee, Kyounghoon;Park, Subong;Park, Seong-Kwae;Kang, Min-Joo;Lee, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.3
    • /
    • pp.175-187
    • /
    • 2013
  • Fuel consumption in fisheries is a primary concern due to environmental effects and costs to fishermen. Much research has been carried out to reduce the fuel consumption related to fishing operations. The fuel consumption of fishing gear during fishing operation is generally related to hydrodynamic resistance on the gear. This research demonstrates a new approach using numerical methods to reduce fuel consumption. The results from the simulation were verified with results that mirrored the model experiments. By designing the fishing gear using drawing software, the whole and partial resistance force on the gear can be calculated as a result of simulations. The simulation results will suggest suitable materials or gear structure for reducing the hydrodynamic forces on the gear while maintaining the performance of the gear. Furthermore, the efficiency of low energy used anchovy dragnet as economic point of view will be dealt. This research will helpful to reduce the GHG emissions from fishing operations and lead to reduce fishing costs due to fuel savings.

On The Hydrodynamic Resistance of the Sablefish Pot in Hauling-up (은대구 통발 권양중의 유체저항에 관하여)

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.13 no.2
    • /
    • pp.1-4
    • /
    • 1977
  • The author determined the relationship between the hauling veloicty and the hydrodynamic resistance of the sablefish pot shaped conic frustum like, and induced the formulae to determine the diameter of the main line and the net horse power of the pot hauler. The results are summarized as follows: 1. The maximum hydrodynamic resistance (with its weight in water) of the pot T(kg), when the bottom webbing is covered by a cloth to imitate the catches are scattered on the bottom, is eatimated as $$ T=120v^{1.1} (0.3{\leqq}v{\leqq}0.8) $$ where v denotes the hauling velocity of the pot in m/sec. 2. When P. P. 3 strand rope is used as main line, the diameter d(mm)is recommended to satisfy the formula $$ d=72 \frac{D}{H} V^{1.1} where H denotes the depth of the fishing ground and D the intervals of the pots linked to the main in m respectively. 3. The pot hauler must displace the net horse power p(ps) of $$ P= \frac{75}{120} \frac{D}{H} v^{2.1}$$

  • PDF

Hydrodynamic Evaluation Method for Developing the Inflatable Kayak (인플래터블 카약 개발을 위한 유체역학적 성능평가 기법)

  • Ki, Jae-Seok;Hah, Chong-Ku;Jang, Ho-Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.627-634
    • /
    • 2012
  • This study includes results of basin test for hydrodynamic performance evaluation with a developed inflatable kayak. Inclining experiment and turning trial experiment of the developed inflatable kayak and an abroad product were carried out in the Ocean engineering Basin. Resistance test was carried out by using downscale model in the circulating water channel. Through method of following performance evaluation, advantage and disadvantage of the developed inflatable kayak were compared with those of the abroad product.

A Comparison of Hydrodynamic Characteristics of Single and Tandem Strut SWATH Ships (하나 또는 두개의 지주를 갖는 소수선면 쌍동선의 유체동역학적 특성 비교)

  • Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.102-116
    • /
    • 1992
  • This report is to provide a comparison of the hydrodynamic characteristics of a single strut SWATH(Small Waterplane Area Twin Hull) model and a tandem(twin) strut SWATH model. The hydrodynamic characteristics included are the resistance in calm water, 6 degree freedom of motion responses in stationary and with forward speeds, and wave loadings etc. All these quantities are measured in the towing tank and compared with the computational results. Based on the present study, the pros and cons for single and tandem strut SWATH designs are clarified and some design suggestions are made.

  • PDF

Development of a framework to estimate the sea margin of an LNGC considering the hydrodynamic characteristics and voyage

  • You, Youngjun;Choi, Jin Woo;Lee, Dong Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.184-198
    • /
    • 2020
  • Decisions of the design speed, MCR, and engine capacity have been empirically made by assuming the value termed the sea margin. Due to ambiguity regarding the effect of some factors on the sea margin, the value has been commonly decided based on experience. To evaluate the value from a new viewpoint, it is necessary to construct an approach to estimate the sea margin through an objective procedure based on a physical and mathematical model. In this paper, a framework to estimate the actual sea margin of an LNGC based on the maneuvering equations of motion is suggested by considering the hull, propeller, rudder, and given sea route under wind and waves. The fouling effect is additionally quantified as the increase of total resistance by considering the re-docking period. The operation data is reviewed to amend the increase of the total resistance considering the speed loss of a ship. Finally, the factor of how much the resistance increases due to fouling is newly obtained for the vessel. Based on the comparison of the estimated sea margin with the empirical range of the sea margin, the constructed framework is regarded as feasible.

Study on Coning Motion Test for Submerged Body (몰수체의 원추형시험에 관한 연구)

  • Park, Jong-Yong;Kim, Nakwan;Rhee, Key-Pyo;Yoon, Hyeon Kyu;Kim, Chanki;Jung, Chulmin;Ahn, Kyoungsoo;Lee, Sungkyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.436-444
    • /
    • 2015
  • A submerged body is sensitive to changes in the roll moment because of the small restoring moment and moment of inertia. Thus, a method for predicting the roll-related hydrodynamic coefficients is important. This paper describes a deduction method for the hydrodynamic coefficients based on the results of a coning motion test. A resistance test, static drift test, and coning motion test were performed to obtain the coefficients in the towing tank of Seoul National University. The sum of the hydrodynamic force, inertial force, gravity, and buoyancy was measured in the coning motion test. The hydrodynamic force was deduced by subtracting the inertial force, gravity, and buoyancy from the measured force. The hydrodynamic coefficients were deduced using the regression method.

A Model Test Study on the Effect of the Stern Interceptor for the Reduction of the Resistance and Trim Angle for Wave-piercing Hulls (파랑관통형 선형의 저항 및 트림각 감소를 위한 선미 인터셉터 부착효과에 관한 모형시험 연구)

  • Kim, Dae Hyuk;Seo, Inn-Duk;Rhee, Key-Pyo;Kim, Nakwan;Ahn, Jin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.485-493
    • /
    • 2015
  • Planing hull form is widely used as a high speed vessel hull. There is a problem of the planing hull not solved yet. The problem is that the planing hull has very large vertical acceleration and large heave and pitch motions. As one method for overcoming this problem, there is "wave-piercing hull". Before the motion in waves is investigated, the resistance and running attitude must be investigated. In this paper, the running attitude and resistance of two wave-piercing hulls are investigated by model tests. Model test results show that the wave-piercing hulls have large trim angle and sinkage at the high speed, so additional model tests are conducted by using the hull appended by stern interceptor that is very thin plate to increase the hydrodynamic pressure at the attached location. The results are compared with other planing hulls and the resistance components and the hydrodynamic force are discussed. From the model test results, it can be known that the stern interceptor is the effective appendage for the reduction of the resistance and trim angle of wave-piercing hull.

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

Hydrodynamic Performance of a 2,500-ton Class Trimaran

  • Kang, kuk-Jin;Lee, Chun-Ju;Kim, Sun-Young;Park, Yun-Rak;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.23-36
    • /
    • 2002
  • This paper describes the powering, seakeeping and maneuvering performances for a 2,500-ton class trimaran. Influence of the side-hull forms and location of those in longitudinal and transverse direction to resistance performance was systematically investigated by a series of model tests and numerical calculations. It was found that the longitudinal location of side-hulls was the most influential design parameter to the resistance performance of the trimaran and the optimum location of side-hull depends on ship speeds. When the side-hull stem is located near the primary wave hollow generated by the main hull, the trimaran shows the best resistance performance. Powering performance of the trimaran is superior to those of similar mono-hull ships. Seakeeping model tests for the trimaran were executed and the results were compared with the theoretical results of a similar mono-hull ship. Generally speaking, seakeeping performance of the trimaran is superior to that of a mono-hull ship. In particular, pitching and rolling performance of the trimaran is excellent, which is due to the increased length and breadth. Maneuvering model tests using a HPMM equipment were executed to evaluate the maneuvering performance of the trimaran. Maneuvering simulation was performed using the maneuvering coefficients from the model tests. The results show that the control ability of heading angle and the direction keeping stability of the trimaran is excellent, even though the turning performance is rather worse compared to those of a similar mono-hull ship.