• Title/Summary/Keyword: Hydrodynamic parameter

Search Result 121, Processing Time 0.024 seconds

Study on the prevention of spragging in a tilting pad journal bearing using the variation of preload (예압 변경을 통한 틸팅패드 저널베어링의 Spragging 방지에 관한 연구)

  • Yang, Seong-Heon;Park, Chul-Hyun;Ha, Hyun-Cheon;Kim, Chae-Sil
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.281-286
    • /
    • 2001
  • Tilting pad journal bearings have been widely used in a high speed rotating machinery, such as steam turbines and gas turbines, owing to their inherent stability characteristics. However, some peculiar fatigue failure in the babbitt metal due to spragging has been continuously occurred at the leading edge of the upper pads. The spragging is defined as the pad vibration initiated on the upper unloaded pads in a tilting pad journal bearing. This paper describes both several kinds of bearing failure related with spragging and the theoretical investigation on the prevention of the spragging phenomenon using the variation of preload. Results show that positive preload(m>0.5) assures all pads remain statically loaded under all operating conditions. For the change of design parameter to prevent spragging, thermo-hydrodynamic lubrication and rotor dynamic analysis were performed to verify temperature limitation on bearing and vibration problems on rotor bearing system.

  • PDF

Improvement of Lubrication Characteristics in Fuel Injection Pump for Medium-Speed Diesel Engines: Part I - Application of Profile Shape

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.205-212
    • /
    • 2015
  • In this research, effects of profile changes of stem section of the plunger on the lubrication characteristics of a fuel injection pump (FIP) were evaluated by hydrodynamic lubrication analysis. The clearance between plunger and barrel was divided into two regions, head and stem. The head was not involved in preventing a decrease of fuel oil pressure. So, research efforts were focused on both edges of the plunger’s stem. The two -dimensional Reynolds equation was used to evaluate lubrication characteristics with variations in viscosity, clearance and profile for a laminar, incompressible, unsteady-state flow. Moreover, the equilibrium equation of moment and forces in the vertical and horizontal directions were used to determine the motion of the plunger. The equations were discretized using the finite difference method. Lubrication characteristics of the FIP were investigated by comparing the dimensionless minimum film thickness, or film parameter, which is the ratio of minimum film thickness to surface roughness. Through numerical analyses, we showed that the profile of the lower edge of the stem had no effect on lubrication characteristics, but the profile of the upper edge had a significant influence on lubrication characteristics. In addition, changes in the profile were more effective in improving lubrication characteristics under low viscosity conditions.

Numerical Analysis of the Flow Field around Artificial Reefs (인공어초 주변의 흐름장에 관한 수치해석)

  • Jeong, Chil-Hoon;Kim, Heon-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • This study investigated the fluid force acting on an artificial reef and the scour pattern at the bottom of the artificial reef in a steady-flow field using the finite difference method (Flow-3D). The structure was tetragonal in shape, like similar objects found in nature. The numerical analysis showed that the hydrodynamic characteristics and incipient scouring pattern matched natural phenomena. The velocity distribution around the tetragon was symmetric and wake occurred inside the tetragon and behind the bottom of the tetragon. The length of the recirculation flow behind the tetragon for each velocity was about 4-5 cm and the magnitude of the recirculation flow inside the tetragon generally increased with the Reynolds' number, although it decreased slightly for Reynolds' numbers from 11,000 to 12,000. In addition, the total fluid force acting on the tetragon increased with the inflow velocity, although the increment was smaller when the velocity exceed 18 cm/sec. The incipient pattern for the scouring of sediment matched the natural phenomenon.

A Comparison of Halo Merger History for Two Different Simulation Codes : GADGET-2 and RAMSES

  • Jung, In-Tae;Yi, Suk-Young K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2012
  • We present our study on a comparison of dark matter halo merger history from the runs using different numerical simulation codes. To analyze the uncertainty caused by the use of different N-body calculation methods, we compare the results from two cosmological hydrodynamic simulation codes GADGET-2 and RAMSES, which use a TreePM algorithm and the Adaptive Mesh Refinement(AMR) technique respectively. We perform cosmological dark matter-only simulations with the same parameter set and initial condition for both. The dark matter halo mass functions from two simulation runs correspond well with each other, except for lower mass haloes. The discrepancy on the low-mass haloes in turn causes a notable difference in halo merger rate, especially for the case of extremely minor merger. The result from GADGET-2 predicts that most haloes undergo more number of mergers with small haloes than that from RAMSES, independent of halo mass and environment. However, in the context of the study on galaxy evolution, such extreme minor mergers generally do not have strong effects on galaxy properties such as morphology or star formation history. Hence, we suggest that this uncertainty could be quantitatively negligible, and the results from two simulations are reliable even with only minor difference in merger history.

  • PDF

Study on Rheological and Phermal Properties of Dioiscorea batatas DECAISNE Starch (마(Dioscorea batatas DECAISNE)전분의 Rheology 및 열적 특성에 관한 연구)

  • 최일숙;이임선;구성자
    • Korean journal of food and cookery science
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 1992
  • The purpose of this study was to investigate the rheological and thermal properties of yam starch. Yam starch had a hydrodynamic volume with the intrinsic viscosity,[$\eta$], of 0.29dl/g deionized water. The values of the intrinsic viscosity of yam starch, determined to pH 2-11, varied between 0.07 to 0.18 dl/g. The highest intrinsic viscosity was obtained at pH 7. At salt concentrations 0-0.2 M NaCl, the intrinsic viscosity of yam starch was decreased up to 0.05 M NaCl concentration then increased to 0.07 M NaCl concentration and remained constant to reach 0.2 M NaCl concentration. The overlap parameter, calculated with the intrinsic vicosity data, was 3.45 g/dl in deionized water. The thermal properties of yam starch were investigated by Differential Scanning Calorimetry. Three endotherms were observed both pH solution and salt concentation. In the presence of pH 9, the onset temperature of gelatinization peak was the lowest temperature of 50.$32^{\circ}C$ and the enthalpy ($\Delta$H) was increased in this solution. The effect of salt on the thermal properties of yam starch was determined at salt concetration of 0-0.2 M NaCl. The enthalpy significantly decreased to salt concentration 0.07 M NaCl and the lowest onset temperature of this concentration was 52.$90^{\circ}C$.

  • PDF

Significance of seabed interaction on fatigue assessment of steel catenary risers in the touchdown zone

  • Elosta, Hany;Huang, Shan;Incecik, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.403-423
    • /
    • 2016
  • The challenges involved with fatigue damage assessment of steel catenary riser (SCR) in the touchdown zone (TDZ) are primarily due to the non-linear behaviour of the SCR-seabed interaction, considerable uncertainty in SCR-seabed interaction modelling and geotechnical parameters. The issue of fatigue damage induced by the cyclic movements of the SCR with the seabed has acquired prominence with the touch down point (TDP) interaction in the TDZ. Therefore, the SCR-seabed response is critical for reliable estimation of fatigue life in the TDZ. Various design approaches pertaining to the lateral pipe-soil resistance model are discussed. These techniques have been applied in the finite element model that can be used to analyse the lateral SCR-seabed interaction under hydrodynamic loading. This study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. In this study, global analyses are performed to assess the influence of vertical linear seabed springs, the lateral seabed model and the non-linear seabed model, including trench evolution into seabed, seabed normalised stiffness, re-penetration offset parameter and soil suction resistance ratio, on the fatigue life of SCRs in the TDZ.

Modeling and analysis of a cliff-mounted piezoelectric sea-wave energy absorption system

  • Athanassoulis, G.A.;Mamis, K.I.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.53-83
    • /
    • 2013
  • Sea waves induce significant pressures on coastal surfaces, especially on rocky vertical cliffs or breakwater structures (Peregrine 2003). In the present work, this hydrodynamic pressure is considered as the excitation acting on a piezoelectric material sheet, installed on a vertical cliff, and connected to an external electric circuit (on land). The whole hydro/piezo/electric system is modeled in the context of linear wave theory. The piezoelectric elements are assumed to be small plates, possibly of stack configuration, under a specific wiring. They are connected with an external circuit, modeled by a complex impedance, as usually happens in preliminary studies (Liang and Liao 2011). The piezoelectric elements are subjected to thickness-mode vibrations under the influence of incident harmonic water waves. Full, kinematic and dynamic, coupling is implemented along the water-solid interface, using propagation and evanescent modes (Athanassoulis and Belibassakis 1999). For most energetically interesting conditions the long-wave theory is valid, making the effect of evanescent modes negligible, and permitting us to calculate a closed-form solution for the efficiency of the energy harvesting system. It is found that the efficiency is dependent on two dimensionless hydro/piezo/electric parameters, and may become significant (as high as 30 - 50%) for appropriate combinations of parameter values, which, however, corresponds to exotically flexible piezoelectric materials. The existence or the possibility of constructing such kind of materials formulates a question to material scientists.

A study on the improvement of the accuracy of fishing trawlers maneuverability estimation at the design stage (설계단계에서의 트롤어선 조종성능 추정 정확성 향상에 대한 연구)

  • KIM, Su-Hyung;LEE, Chun-Ki;LEE, Min-Gyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.374-383
    • /
    • 2020
  • At ship design stage, the maneuverability is generally estimated based on the empirical formula or the computational fluid dynamic (CFD), which is one of the numerical simulation methods. Using the hydrodynamic derivatives derived through these methods can quantitatively estimate the maneuverability of target vessels and evaluate indirect maneuverability. Nevertheless, research on estimating maneuverability is insufficient for ships not subject to IMO maneuverability standard, especially fishing vessels, and even at the design stage, the empirical formula developed for merchant ships is applied without modification. An estimation error may occur due to the empirical formula derived from the regression analysis results of a model test if the empirical formula developed for merchant ships with different hull shapes is applied to fishing vessels without any modification. In this study, the modified empirical formula that can more accurately estimate the fishing vessel's maneuverability was derived by including the hull shape parameter of target fishing trawlers in the regression analysis process that derives Kijima et al. (1990) formula. As a result, the modified empirical formula showed an average estimation error of 6%, and the result improved the average error of 49% of Kijima et al. (1990) formula developed for merchant ships.

Coronary three vessel disease: hydrodynamic simulations including the time-dependence of the microvascular resistances

  • Harmouche, Majid;Anselmi, Amedeo;Maasrani, Mahmoud;Mariano, Chiara;Corbineau, Herve;Verhoye, Jean-Philippe;Drochon, Agnes
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.279-292
    • /
    • 2014
  • This paper presents some simulations of fluxes and pressures in the coronary network, in the case of very severe coronary disease (several stenoses on the left branches and total occlusion of the right coronary artery). In that case, coronary artery bypass graft surgery is the commonly performed procedure. However, the success of the intervention depends on many factors. Modeling of the coronary circulation is thus important since it can help to understand the influence of all these factors on the coronary haemodynamics. We previously developed an analog electrical model that includes the eventual presence of collateral flows, and can describe the different revascularization strategies (two grafts, three grafts, ...). The aim of the present work is to introduce in our simulations the time-dependence of the coronary microvascular resistances, in order to better represent the effect of the systolic ventricular contraction (which induces an elevation of the resistances because the vessels are squeezed).

Computation of Laryngeal Flow and Sound through a Dynamic Model of the Vocal Folds (동적 성대 모델을 이용한 후두 내 유동 및 음향장에 대한 수치 연구)

  • Bae, Young-Min;Moon, Young-J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.21-24
    • /
    • 2008
  • The present study numerically investigates the glottal airflow characteristics as well as acoustic features of phonation fully coupled with dynamic behavior of vocal folds. The vocal folds are described by a low-dimensional body-covered model characterized by bio-mechanical parameters such as glottal width, vocal folds stiffness, and subglottal pressure. The flow in the vocal tract is modeled as an incompressible, axisymmetric form of the Navier-Stokes equations (INS), while the acoustic field is predicted by the linearized perturbed compressible equations (LPCE). The computed result shows that a two-mass model of vocal folds is sufficient to reproduce temporal variations in oral airflow and glottis motion produced by female speakers. It is also found that i) the glottal width has a significant effect on the amplitude of glottal flow, and thus on the amplitude of acoustic wave in the vocal tract, ii) the vocal fold tension is the main control parameter for the fundamental frequency of phonation, iii) the subglottal pressure plays an appreciable role on reproduction of the self-sustained oscillation of vocal folds, and iv) the strength of pulsating airflow and vortical structures are primarily affected by glottal width and subglottal pressure, and are closely related to pitch, loudness, and voice quality. Finally, more comprehensive explanation about the difference between one- and two-mass models is presented with discussion of effectiveness of vocal folds oscillation and voice quality.

  • PDF