• Title/Summary/Keyword: Hydrodynamic journal bearing

Search Result 151, Processing Time 0.023 seconds

Thermohydrodynamic Analysis Considering Flow Field Patterns Between Roughness Surfaces (미세 표면 거칠기에 지배되는 박막 유동장 형태를 고려한 윤활거동)

  • 김준현;김주현
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.167-177
    • /
    • 2003
  • The study deals with the development of a thermohydrodynamic (THD) computational procedure for evaluating the pressure, temperature and velocity distributions in fluid films with very rough geometry. A parametric investigation is performed to predict the bearing behaviors in the lubricating film having the absorbed layers and their interfaces determined by the rough surfaces with Gaussian distribution. The layers are expressed as functions of the standard deviations of each surface to characterize flow patterns between both the rough sur-faces. The velocity variations and the heat generation are assumed to occur in the central (shear) zone with the same bearing length and width. The coupled effect of surface roughness and shear zone dependency on hydrodynamic pressure and temperature has been found in non-contact mode. The procedure confirms the numerically determined relationship between the pressure and film gap on condition that its roughness magnitude is smaller than the fluid film thickness.

Mixed Lubrication Analysis of Parallel Thrust Bearing Considering Surface Roughness (표면거칠기를 고려한 평행 스러스트 베어링의 혼합윤활 해석)

  • 이동길;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.455-460
    • /
    • 2000
  • The real area of contacts, average film thickness, mean real pressure, and mean hydrodynamic pressure are investigated numerically in this study, especially for the parallel thrust bearing. Model surface is generated numerically with given autocorrelation function and some surface profile parameters. Then the average Reynolds equation contained flow factors and contact factor is applied to predict the effects of surface roughness in mixed lubrication regimes. In this equation, flow factors are defined as correction terms to smooth out high frequency surface roughness and contact factor is introduced to relieve from obtaining the average film thickness. Therefore the computation time to obtain barh h can be reduced.

Effect of Mn Addition on Rolling Contact Fatigue of C-Base Induction Hardened Bearing Steels (C계 유도경화 베어링강의 회전접촉 피로거동에 미치는 Mn 첨가의 영향)

  • Jung, Kyung-Jo;Yoon, Kee-Bong;Choi, Byung-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.205-212
    • /
    • 1995
  • Effect of Mn addition on rolling contact fatigue of C-base induction hardened bearing steels has been investigated to develop inexpensive surface-hardened bearing steels with improved resistance to rolling contact fatigue. Fatigue tests were conducted in elasto-hydrodynamic lubricating conditions at a shaft speed of 5,000rpm, under max. Hertzian stress of $492kg/mm^2$. It was found in the C-Mn steels that effective depth of induction hardened layer and amount of retained austenite were slightly increased in comparison with those of C-base steels. finer interlamellar spacing of pearlite in the C-Mn steels was also observed using TEM. Decomposition of retained austenite during rolling contact fatigue was smaller in quantity in the C-Mn steels than C-base steels. This might be associated with enhanced mechanical stability of retained austenite with addition of Mn. Statistical analysis of fatigue life for C-Mn steels using Weibull distribution indicated that improved resistance to rolling contact fatigue was mainly attributed to transformation induced plasticity and mechanical stability of retained austenite.

  • PDF

Effect of Retained Austenite on Rolling Contact Fatigue of Nitrocarburized High-Carbon Chromium Bearing Steel (침질탄화처리한 고탄소 크롬 베어링강의 회전접촉 피로거동에 미치는 잔류오스테나이트의 영향)

  • Choi, Byung Young;Kim, Dong Keon;Kim, Chang Seok;Jin, Jai Koan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.169-176
    • /
    • 1996
  • Effect of retained austenite on rolling contact fatigue of nitrocarburized high-carbon chromium bearing steel has been investigated to develop surface-hardened bearing steel with imprved resistance to rolling contact fatigue. Fatigue tests were conducted in elesto-hydrodynamic lubricating conditions at a shaft speed of 5,000rpm, under max, hertzian stress of $492kg/mm^2$. Volume fraction of retained austenite in austenitic nitrocarburized STB2 steel was controlled by tempering at various temperature, $200{\sim}250^{\circ}C$. It was observed using TEM that decomposition of retained austenite during tempering at $250^{\circ}C$ was the highest in quantity, resulted in formation of lower bainite. Rolling contact fatigue life of the specimens with lower bainite, formed by decomposition of retained austenite, was improved in comparison with there of specimens with more amount of retained austenite.

  • PDF

Performance Predictions of Gas Foil Journal Bearing with Shim Foils (심포일을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 2018
  • This paper presents a computational model of a gas foil journal bearing with shim foils between the top foil and bumps, and predicts its static and dynamic performance. The analysis takes the previously developed simple elastic foundation model for the top foil-bump structure and advances it by adding foil models for the "shim foil" and "outer top foil." The outer top foil is installed between the (inner) top foil and bumps, and the shim foil is installed between the inner top foil and outer top foil. Both the inner and outer top foils have an arc length of $360^{\circ}$, but the arc length of the shim foil is shorter, which causes a ramp near its leading edge in the bearing clearance profile. The Reynolds equation for isothermal and isoviscous ideal gas solves the hydrodynamic pressure that develops within the bearing clearance with preloads due to the ramp. The centerline pressure and film thickness predictions show that the shim foil mitigates the peak pressure occurring at the loading direction, and broadens the positive pressure as well as minimum film thickness zones except for the shortest shim foil arc length of $180^{\circ}$. In general, the shim foil decreases the journal eccentricity, and increases the power loss, direct stiffness, and damping coefficients. As the shim foil arc length increases, the journal eccentricity decreases while the attitude angle, minimum film thickness, and direct stiffness/damping coefficients in the horizontal direction increase.

Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps (범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석)

  • Kim, T.H.;Mun, H.W.
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

A Analytical Study on Seismic Performance of Stainless Water Tank using Lead Rubber Bearing (납고무받침을 이용한 스테인리스 물탱크 내진성능에 관한 해석적 연구)

  • Kim, Hu-Seung;Oh, Ju;Jung, Hie-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.230-236
    • /
    • 2018
  • Earthquakes over 5.0 on the Richter scale have recently occurred in Korea, which has led to interest in the seismic safety of structures. If a water storage facility is damaged by an earthquake, the water could leak, and the insufficient water would make fire suppression difficult. Therefore, a water storage facility should satisfy safety requirements for earthquakes. In this study, the seismic performance of a water tank was improved by installing a lead rubber bearing between the foundation and the tank. It designed the lead rubber bearing available to the existed concrete foundation. ANSYS was used for modeling to consider the interaction between the fluid and structure of the tank and the hydrostatic and hydrodynamic pressure using four seismic waves. In the case of hydrostatic pressure at 2.5 water level, full level, the same stress appeared irrespective of whether the seismic isolation was installed. When hydrostatic pressure and hydrodynamic pressures are applied at the same time, the seismic-isolated water tank showed less seismic force, and the damping ratio was lower than that of general seismic isolation. This occurred because the weight of the water tank is much smaller than the stiffness of the seismic isolation. The result is expected to be used for further research on seismic capacity evaluation for water tanks.

Wear Analysis at the Interface of Connecting-Rod Small-End Bushing and Piston-Pin Boss with a Floating Piston-Pin at Constant Angular Velocity during Engine Firing (엔진 파이어링동안 일정 축 각속도에서 비고정식 피스톤-핀과 연결봉-소단부 부싱 및 피스톤-핀 보스의 접촉면 마모해석)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.168-192
    • /
    • 2020
  • In recently designed diesel engines, the running conditions for piston-pin bearings have become severe because of the higher combustion pressure and increased temperature. Moreover, the metal removal from the bushing material has strongly reduced the ability of the antifriction material to accept asperity contacts. Therefore, it is necessary to find ways of reducing wear scar on the connecting-rod small-end bushing and piston-pin boss bearing related to the higher combustion pressure on the power cell of an engine. In this work, the position and level of material removal from the surfaces of the bushing and bearing under such severe operating conditions - for example, maximum power and torque conditions of a passenger car diesel engine - are estimated for several combinations of surface roughness. First, piston-pin rotating motion is investigated by calculating the friction coefficient at piston-pin bearings, the oil film thickness, and the frictional torques induced by hydrodynamic shear stress. Subsequently, the wear scarring on the surfaces of a connecting-rod small-end bushing and two piston-pin boss bearings related to piston-pin rotational motion is numerically calculated under the maximum power and torque operating conditions. This work is helpful to determine the reasonable surface roughness of the bushing and bearing for reducing wear volume occurring at the interface between a bearing and a shaft.

Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model (쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석)

  • Jong wan Yun;So yeon Moon;Sang-Shin Park
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.

Design, Fabrication, and Testing of a MEMS Microturbine

  • Jeon Byung Sun;Park Kun Joong;Song Seung Jin;Joo Young Chang;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.682-691
    • /
    • 2005
  • This paper describes the design, fabrication, and testing of a microturbine developed at Seoul National University. Here, the term 'microturbine' refers to a radial turbine with a diameter on the order of a centimeter. Such devices can be used to transmit power for various systems. The turbine is designed using a commercial CFD code, and it has a design flow coefficient of 0.238 and work coefficient of 0.542. It has 31 stator blades and 24 rotor blades. A hydrodynamic journal bearing and hydrostatic thrust bearings counteract radial and axial forces on the rotor. The test turbine consists of a stack of five wafers and is fabricated by MEMS technology, using photolithography, DRIE, and bonding processes. The first, second, fourth, and fifth layers contain plumbing, and hydrostatic axial thrust bearings for the turbine. The third wafer contains the turbine's stator, rotor, and hydrodynamic journal bearings. Furthermore, a turbine test facility containing a flow control system and instrumentation has been designed and constructed. In performance tests, a maximum rotation speed of 11,400 rpm and flow rate of 16,000 sccm have been achieved.