• Title/Summary/Keyword: Hydrodynamic Mass

Search Result 292, Processing Time 0.021 seconds

Horizon Run 5: the largest cosmological hydrodynamic simulation

  • Kim, Juhan;Shin, Jihye;Snaith, Owain;Lee, Jaehyun;Kim, Yonghwi;Kwon, Oh-Kyung;Park, Chan;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2019
  • Horizon Run 5 is the most massive cosmological hydrodynamic simulation ever performed until now. Owing to the large spatial volume ($717{\times}80{\times}80[cMpc/h]^3$) and the high resolution down to 1 kpc, we may study the cosmological effects on star and galaxy formations over a wide range of mass scales from the dwarf to the cluster. We have modified the public available Ramses code to harness the power of the OpenMP parallelism, which is necessary for running simulations in such a huge KISTI supercomputer called Nurion. We have reached z=2.3 from z=200 for a given simulation period of 50 days using 2500 computing nodes of Nurion. During the simulation run, we have saved snapshot data at 97 redshifts and two light cone space data, which will be used later for the study of various research fields in galaxy formation and cosmology. We will close this talk by listing possible research topics that will play a crucial role in helping us take lead in those areas.

  • PDF

Estimation of damping induced by taut mooring lines

  • Xiong, Lingzhi;Lu, Wenyue;Li, Xin;Guo, Xiaoxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.810-818
    • /
    • 2020
  • A moored floating structure may exhibit resonant motion responses to low-frequency excitations. Similar to the resonant responses of many vibration systems, the motion amplitude of a moored floating structure is significantly affected by the damping of the entire system. In such cases, the damping contributed by the mooring lines sometimes accounts for as much as 80% of the total damping. While the damping induced by catenary mooring lines is well-investigated, few studies have been conducted on the damping induced by taut mooring lines, especially one partly embedded in soil. The present study develops a simple but accurate model for estimating the damping contributed by mooring lines. A typical type of taut mooring line was used as the reference and the hydrodynamic drag force and soil resistance were taken into consideration. The proposed model was validated by comparing its predictions with those of a previously developed model and experimental measurements obtained by a physical model. Case studies and sensitivity studies were also conducted using the validated model. The damping induced by the soil resistance was found to be considerably smaller than the hydrodynamic damping. The superposition of the wave frequency motion on the low-frequency motion was also observed to significantly amplify the damping induced by the mooring lines.

Dynamic simulation of a Purse seine net behavior for hydrodynamic analysis (유체역학적 해석을 위한 선망 어구 운동의 동적 시뮬레이션)

  • 김현영;이춘우;차봉진;김형석;권병국
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • This study presents a dynamic simulation of a purse seine net behavior Mathematical model suitable for purse seining, which is based on data from a series of previous simulations, various field experiments, is modelized as a set of mass-spring system. In this model, a number of meshes are approximated as one mass point, each of which connected to its neighbors by massless springs, the equations of motion are derived from considering internal force from the springs and external forces such as resistance and gravitation. This simulation shows the quantitative state on every mass point of the net and purse line during the shooting and pursing phases. So it is possible that performance of a purse seine net be analyzed using various and evolving parameters such as the shooting speed, the hauling speed, the size or type of the sinker, float and twine, also the hanging ratio etc.

Semi-active control of vibrations of spar type floating offshore wind turbines

  • Van-Nguyen, Dinh;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.683-705
    • /
    • 2016
  • A semi-active algorithm for edgewise vibration control of the spar-type floating offshore wind turbine (SFOWT) blades, nacelle and spar platform is developed in this paper. A tuned mass damper (TMD) is placed in each blade, in the nacelle and on the spar to control the vibrations for these components. A Short Time Fourier Transform algorithm is used for semi-active control of the TMDs. The mathematical formulation of the integrated SFOWT-TMDs system is derived by using Euler-Lagrangian equations. The theoretical model derived is a time-varying system considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar, mooring system and the TMDs, the hydrodynamic effects, the restoring moment and the buoyancy force. The aerodynamic loads on the nacelle and the spar due to their coupling with the blades are also considered. The effectiveness of the semi-active TMDs is investigated in the numerical examples where the mooring cable tension, rotor speed and the blade stiffness are varying over time. Except for excessively large strokes of the nacelle TMD, the semi-active algorithm is considerably more effective than the passive one in all cases and its effectiveness is restricted by the low-frequency nature of the nacelle and the spar responses.

Experimental Study of Molten Wood's Metal Jet Breakup in Subcooled Water (과냉각수조 내의 제트에 의한 용융우드메탈 미립화에 관한 실험적 연구)

  • Heo, Hyo;Jerng, Dong Wook;Bang, In Cheol
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.197-203
    • /
    • 2014
  • The liquid jet breakup has been studied in the areas such as aerosols, spray and combustion. The breakup depends on several physical parameters such as the jet velocity, the nozzle inner diameter, and the density ratio of the water to the jet. This paper deals with characteristics of the jet breakup according to the jet velocity and the nozzle diameter. In order to consider only hydrodynamic factors, all the experiments were conducted in non-boiling conditions. The jet behavior in the water pool was observed by high-speed camera and PIV technique. For the condition of the inner diameter of 6.95 mm and the jet velocity of 2.8 m/s, the debris size of 22 mm gave the largest mass fraction, 39%. For higher jet velocity of 3.1 m/s, the debris size of 14 mm gave the largest mass fraction, 36%. For the nozzle with inner diameter of 9.30 mm, the debris size distribution was different. For jet velocity of 2.8 m/s and 3.1 m/s, the debris size with the largest mass fraction was found to be 14 mm. It was identified that the debris size decreased as the diameter or the jet velocity increased.

Study on the cooling performance of discrete heat sources using coolants (냉각제들에 따른 불연속 발열체의 냉각성능 연구)

  • 최민구;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.224-235
    • /
    • 1999
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water, PF-5060, and paraffin slurry. The experimental parameters were coolants including Paraffin slurry with mass fraction of 2.5~7.5%, heat flux of 10~40W/$\textrm{cm}^2$ for the simulated VLSI chips and Reynolds numbers of 3,000~20,000. The size of paraffin slurry was constant as 10~40${\mu}{\textrm}{m}$ before and after the experiment. The chip surface temperatures for paraffin slurry were lower than those for water and PF-5060. The local heat transfer coefficients for the paraffin slurry were larger than those for water and the local heat transfer coefficients reached a row-number-independent and thermally-fully-developed value approximately after the third row. The local Nusselt numbers for paraffin slurry with a mass fraction of 7.5% were larger by 20~38% than those for water. The paraffin slurry with a mass fraction of 5% shelved the best thermal and hydrodynamic characteristics when local heat transfer and pressure drop were considered simultaneously.

  • PDF

Gas Dynamical Evolution of Central Regions of Barred Galaxies

  • Seo, U-Yeong;Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • We investigate dynamical evolution of gas in barred galaxies using a high-resolution, grid-based hydrodynamic simulations on two-dimensional cylindrical geometry. Non-axisymmetric gravitational potential of the bar is represented by the Ferrers ellipsoids independent of time. Previous studies on this subject used either particle approaches or treated the bar potential in an incorrect way. The gaseous medium is assumed to be infinitesimally-thin, isothermal, unmagnetized, and initially uniform. To study the effects of various environments on the gas evolution, we vary the gas sound speed as well as the mass of a SMBH located at the center of a galaxy. An introduction of the bar potential produces bar substructure including a pair of dust lane shocks, a nuclear ring, and nuclear spirals. The sound speed affects the position and strength of the bar substructure significantly. As the sound speed increases, the dust lane shocks tend to move closer to the bar major axis, resulting in a smaller-size nuclear ring at the galactocentric radius of about 1 kpc. Nuclear spirals that develop inside a nuclear ring can persist only when either sound speed is low or in the presence of a SMBH; they would otherwise be destroyed by the ring material with eccentric orbits. The mass inflow rates of gas toward the galactic center is also found to be proportional to the sound speed. We find that the sound speed should be 15 km/s or larger if the mass inflow rate is to explain nuclear activities in Seyfert galaxies.

  • PDF

The Estimation of N, P mass Balance in Masan Bay using a Material Cycle Model (물질순환 모델을 이용한 마산만의 질소, 인 수지 산정)

  • 김동명;박청길;김종구
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.833-843
    • /
    • 1998
  • It is noted that the red tides and the oxygen-deficient water mass are extensively developed in Masan Bay during summer. The nutrients mass balance was calculated in Masan Bay, using the three-dimensional numerical hydrodynamic model and the material cycle model. The material cycle model was calibrated with the data obtained on the field of the study area in June 1993. The nutrients mass balance calculated by the combination of the residual currents and material cycle model results showed nutrients of surface and middle levels to be transported from the inner part to the outer part of Masan Bay, and nutrients of bottom level to be transported from outer part to inner part of Masan Bay. The uptake rate of DIN in the box A1(surface level of inner part) was found to be 337. 5mg/$m^3$ㆍday, the largest value in all 9 boxes and that of DIP was found to be 18.6mg/$m^3$ㆍday in box A1, and the regeneration rate of DIN was found to be 78.2mg/$m^3$ㆍday in the box A3(bottom level of inner part), and that of DIP was found to be 18.6mg/$m^3$ㆍday in box A1. The regenerations of DIN and DIP in the water column of the entire Bay were found to be 7.66ton/day and 760kg/day, respectively. And the releases of DIN and DIP from the sediments of the entire Bay were found to be 2.86ton/day and 634kg/day, respectively. The regeneration rate was 2.5 times as high as the release rate in DIN, and 1.2 times in DIP. The results of mass balance calculation showed not only the nutrients released from the sediments but the nutrients regenerated in water column to be important in the control and management of water quality in Masan Bay.

  • PDF

Beam-Like Ship Vibration Analysis in Consideration of Fluid (유체력을 고려한 보-유추 선체진동 해석)

  • Son, Choong-Yul
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.206-213
    • /
    • 1999
  • In the beam-like ship vibration analysis. three-dimensional correction factor(J-factor) can be calculated by considering the three-dimensional effect of the two-dimensional added mass. However, existing method is time-consuming with low accuracy in respect of global vibration analyses for vessels with large breadth. In this paper, to improve the demerit of the previous method, a new method of the beam-like ship vibration analysis is introduced In this method. the three-dimensional fluid added mass of surrounding water is calculated directly by solving the velocity potential problem using the Boundary Element Method (BEM). Then the three-dimensional added mass is evaluated as the lumped mass for each strip. Also, the beam-like ship vibration analysis for the structural beam model if performed with the lumped mass considered. It was verified that this new method is useful for the beam-like ship vibration analysis by comparing results obtained from both the existing method and the new method with experimental measurements for the open top container model.

  • PDF

Spiral Structure and Mass Inflows in Barred-Spiral Galaxies

  • Kim, Yonghwi;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2013
  • We use high-resolution hydrodynamic simulations to study nonlinear gas responses to imposed non-axisymmetric stellar potentials in barred-spiral galaxies. The gas is assumed to be infinitesimally thin, isothermal, and unmagnetized. We consider various spiral-arm models with differing strength and pattern speed, while fixing the bar parameters. We find that the extent and shapes of spiral shocks as well as the related mass drift depend rather sensitively on the pattern speed. In models where the arm pattern is rotating more slowly than the bar, the gaseous arms extend from the bar ends all the way to the outer boundary, with a pitch angle slightly smaller than that of the stellar counterpart. The arms drive mass inflows at a rate of ${\sim}0.5-2.5M{\odot}/yr$ to the bar region to which the shock dissipation, external torque, and self-gravitational torque contribute about 50%, 40%, and 10%, respectively. About 85% of the inflowing mass is added to bar substructures such as an inner ring, dust lanes, and a nuclear ring. while the remaining 15% encircles the bar region. On the other hand, models where the arms corotate with the bar exhibit mass outflows, rather than inflows, over most of the arm region. In these models, spiral shocks are much more tightly wound than the stellar arms and cease to exist in the region where $M{\bot}/sinp*{\geq}25-40$, where $M{\bot}$ denotes the Mach number of a rotating gas perpendicular to the arms with pitch angle p*. We demonstrate that the distributions of line-of-sight velocities and densities can be a useful diagnostic tool to distinguish if the arms and bar corotate or not.

  • PDF