• Title/Summary/Keyword: Hydrodynamic Code

Search Result 177, Processing Time 0.019 seconds

Evaluation of Dynamic Response for Liquid Storage Tank using the Observed Earthquake Data (지진계측데이타에 근거한 유체저장탱크의 동적응답 평가)

  • 허택영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.115-127
    • /
    • 1997
  • A study to evaluate the seismic response of $\frac{1}{2}$-scaled liquid storage tank constructed in Hualien, is performed. And this study is to identify the liquid-structure-soil interaction by observed earthquake data ans analyzed results. After the calculation of soil impedance for the test site by SASSI code, 3-dimensional seismic response analysis is performed by BEM-FEM-Impedance Method with the consideration of liquid-structure-soil interaction when the tank is excited by real earthquake. The observed acceleration and hydrodynamic pressure are compared with the numerical results. This comparisons show good agreement in predominant frequency and maximum hydrodynamic pressure. And the free surface sloshing motion due to earthquake loadings is computed in time domain.

  • PDF

Numerical Techniques in Calculation of Hydrodynamic Stability for Vertical Natural Convection Flows (수직(垂直) 자연대류(自然對流)의 수동력학적(水動力學的) 안정성(安定性) 계산에 관한 수치해석(數値解析) 방법(方法))

  • Hwang, Young-Kyu
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.82-94
    • /
    • 1988
  • The hydrodynamic stability equations for natural convection flows adjacent to a vertical isothermal surface in cold or warm water (Boussinesq or non-Boussinesq situation for density relation), constitute a two-point-boundary-value (eigenvalue) problem, which was solved numerically using the simple shooting and the orthogonal collocation method. This is the first instance in which these stability equations have been solved using a computer code COLSYS, that is based on the orthogonal collocation method, designed to solve accurately two-point-boundary-value problem. Use of the orthogonal collocation method significantly reduces the error propagation which occurs in solving the initial value problem and avoids the inaccuracy of superposition of asymptotic solutions using the conventional technique of simple shooting.

  • PDF

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.

Hydrodynamic performance of a vertical slotted breakwater

  • George, Arun;Cho, Il Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.468-478
    • /
    • 2020
  • The wave interaction problem with a vertical slotted breakwater, consisting of impermeable upper, lower parts and a permeable middle part, has been studied theoretically. An analytical model was presented for the estimation of reflection and transmission of monochromatic waves by a slotted breakwater. The far-field solution of the wave scattering involving nonlinear porous boundary condition was obtained using eigenfunction expansion method. The empirical formula for drag coefficient in the near-field, representing energy dissipation across the slotted barrier, was determined by curve fitting of the numerical solutions of 2-D channel flow using CFD code StarCCM+. The theoretical model was validated with laboratory experiments for various configurations of a slotted barrier. It showed that the developed analytical model can correctly predict the energy dissipation caused by turbulent eddies due to sudden contraction and expansion of a slotted barrier. The present paper provides a synergetic approach of the analytical and numerical modelling with minimum CPU time, for better estimation of the hydrodynamic performance of slotted breakwater.

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

Water Quality Modeling of the Ara Canal, Using EFDC-WASP Model in Series (3차원 EFDC-WASP 연계모델을 이용한 경인아라뱃길 수질 예측)

  • Yin, Zhenhao;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • Ara Canal is the first artificial canal in Korea that connects the Han River and the Yellow Sea. Due to mixture of waters with different salinity and water quality, complicated hydrodynamic and water quality distributions are expected to occur inside the canal. An integrated hydrodynamic and water quality modeling system was developed using the 3 dimensional hydrodynamic model, EFDC (Environmental Fluid Dynamics Code) and the water quality model WASP (Water Quality Analysis and Simulation Program). According to the modeling results, BOD, TN, TP and Chl-a concentrations inside the canal were lower at the West Gate side than the Han River side since influent concentrations of the West Gate side are significantly lower. Chemical stratification due to salinity difference were more evident at the West Gate side as vertical salinity difference were more pronounced in this area. On the other hand, Chl-a concentrations showed more pronounced vertical distribution at the Han River side as Chl-a concentrations were higher in this area. It was notable that Dissolved Oxygen concentrations can be lower than 2 mg/L occasionally in the middle part of the canal. While major factor affecting DO concentrations in the canal are inflows via both gates, the other important factor was found to be BOD decay in the canal due to extended hydraulic residence time. This study can be used to predict hydrodynamic conditions and water quality in the canal during the year and thus can be helpful in the development of gate operation method of the canal.

Computational Analysis on Effect of Ambient Swirling Flow on Combustion and Flame Development in Coal Burner Flames (석탄 연소로에서 버너주위 선회유동이 연소 및 화염발달에 미치는 영향에 관한 수치적 연구)

  • Lee, Hookyung;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.15-16
    • /
    • 2012
  • The present study aims to investigate quantitatively the hydrodynamic effect on combustion process of pulverized coal particles in large scale combustion chamber using computational analysis, with a general purpose computational fluid dynamics code. Burner hydrodynamics include swirl and turbulence intensity from the burner. To understand the phenomena which are difficult to observe how flow has influence on the combustion process, comparative effect of combustion related coal properties and hydrodynamics is evaluated on flame formation and development in burner flames.

  • PDF

CFD for Y-type Constant Flowrate Valve Design (Y형 세대별 정유량 밸브 개발에서의 CFD의 활용)

  • Kwon, U-Cheol;Lee, Byeong-Huee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.488-491
    • /
    • 2004
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve shape is carried out to confirm the flow field whether the designed valve shape is good or not. The simulation of the incompressible flow in a constant flowrate control valve is performed by using the commercial code, FLUENT/UNS 6.0. The results of flow field show the designed valve has some problems, therefore these will be good data for new valve design.

  • PDF

Radiation Hydrodynamics of 2-D Accretion Disks

  • OKUDA TORU
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.251-254
    • /
    • 2001
  • To examine the structure and dynamics of thick accretion disks, we use a two-dimensional viscous hydrodynamic code coupled with radiation transport. The $\alpha$-model and the full viscous stress-tensor description for the kinematic viscosity are used. The radiation transport is treated in the gray, flux-limited diffusion approximation. The finite difference methods used are based on an explicit-implicit method. We apply the numerical code to the Super-Eddington black-hole model for SS 433.@The result for a very small viscosity parameter a reproduces well the characteristic features of SS 433, such as the relativistic jets with $\~$0.26c, the small collimation degree of the jets, the mass-outflow rate of ${\ge}5{\times}10^{-7}M{\bigodot}yr^{-1}$, and the formation of the X-ray iron emission lines.

  • PDF

Structures and Energetics of Flows in Ultra-relativistic Jets

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.36.3-36.3
    • /
    • 2021
  • We study ultra-relativistic jets on several tens kpc scales through three-dimensional relativistic hydrodynamic (RHD) simulations using a new RHD code based on the weighted essentially non-oscillatory (WENO) scheme. Utilizing the high-resolution and high-accuracy capabilities of the new code, we especially explore the structures and energetics of nonlinear flows, such as shocks, turbulence, velocity shear in different parts of jets. We find that the mildly relativistic shocks which form in the jet backflow are most effective for the shock dissipation of the jet energy, while the turbulent dissipation is largest either in the backflow or in the shocked ICM, depending on the jet parameter. The velocity shear is strongest across the jet flow to the cocoon boundary. Our results should have important implications for the studies of high-energy cosmic-ray production in radio galaxies.

  • PDF