• Title/Summary/Keyword: Hydrodynamic 해석

Search Result 664, Processing Time 0.026 seconds

The Effect of Fluid-Structure Interaction on the Dynamic Response of Reactor Internals (유체-구조물 상호작용이 원자로내부구조물의 동적응답에 미치는 영향)

  • 정명조;박찬국;황원걸
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.73-82
    • /
    • 1993
  • Investigated in this paper is the effect of fluid-structure interaction between reactor internal components due to their immersion in a confining fluid on the dynamic responses. A non-linear mathematical model is developed for the dynamic analysis of the reactor internals, which includes lumped masses, stiffnesses and hydrodynamic couplings. The hydrodynamic mass matrix which characterizes the fluid-structure interaction is calculated. Also, the equations of motion containing hydrodynamic mass matrix are presented. The responses of the reactor internals due to seismic and pipe break excitations are obtained for the case of with- and without-hydrodynamic couplings and the different response characteristics are investigated.

  • PDF

Integrated Analysis of Hydrodynamic Motions and Structural Behavior of Large-Scaled Floating Structures using AQWA-ANSYS Coupling (AQWA-ANSYS 연계에 의한 대형 부유구조체의 파랑운동-구조거동 통합해석)

  • Lee, Du-Ho;Jeong, Youn-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.601-608
    • /
    • 2011
  • In order to design floating structures, it should be required to evaluate hydrodynamic motions and structural behavior under the wave loadings. Then, structural behavior of floating structures should be evaluated including the effects of wave-induced hydraulic pressure subjected to floating structures. However, there has been a problem to exactly evaluate structural behavior of floating structures since it was difficult to directly connect wave-induced hydraulic pressure resulting from hydrodynamic analysis with structural analysis model. In this study, in order to exactly evaluate structural behavior of floating structures under the wave loading, integrated analysis of hydrodynamic motion and structural behavior was carried out to the large-scaled floating structure. The wave-induced hydraulic pressure resulting from hydrodynamic analysis AQWA were directly mapped to structural analysis model ANSYS bia Workbench interface of ANSYS Inc.. As the results of this study, it was found that the integrated analysis of this study evaluate exactly structural behavior of floating structures under the wave loadings since this method can directly reflect wave-induced hydraulic pressure resulting from hydrodynamic analysis to structural analysis model. Also, as the results of structural behavior evaluation, it was found that the tensile stress on the top slab was maximized at the wave direction of $0^{\circ}$, and tensile stress on the bottom slab was maximized at the wave direction of $45^{\circ}$, respectively.

Hydrodynamic Masses of HANARO Flow Tubes (하나로 유동관의 동적유체질량)

  • 류정수;김두기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.413-422
    • /
    • 2001
  • In this study, the effect of hydrodynamic masses is investigated in the dynamic characteristics and earthquake response analyses of the submerged HANARO flow tubes. First, the consistent hydrodynamic masses of the surrounding water are obtained by finite element method. Then, modal analyses and response spectrum analyses are performed and verified by comparing the results with those measured from an experiment. Arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered by using the general benefits of a finite element method comparing with the conventional analytical methods. Practical criteria based on parametric studies are proposed to evaluate the dynamic characteristics of HANARO flow tubes including the hydrodynamic masses.

  • PDF

Finite Element Analysis for the Penetration Phenomena of Shaped Charge Jets using Hydrodynamic Theory (Hydrodynamic 이론을 이용한 성형작약탄두 제트의 관통 현상에 관한 유한요소 해석)

  • Kang, Youngku
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • In this paper, the penetration process of Shaped charge jet(SCJ) was simulated through finite element analysis to obtain physical quantities such as jet incidence velocity, penetration rate, and penetration increment. As a result of applying these physical quantities to the hydrodynamic theory, it was confirmed that the penetration efficiency of the jet with a high incident velocity is higher than that of the following slow jet. This efficiency decreased sharply when the jet was slower than the hydrodynamic limit(HL). On the other hand, the comparison of penetration increment and jet consumption over time showed that the length extension effect should be considered for SCJ's theoretical penetration analysis.

Estimation of Equivalent Hydrodynamic Coefficients by Bean Permutation Technique (보치환법에 의한 등가 유체력계수 산정)

  • 박춘군
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.81-86
    • /
    • 2000
  • For on-shore structures, dynamic analysis becomes increasingly important as the water depth increases and the structural configuration becoines slenderer. In this study, an estimation method for equivalent three dimensional (30) hydrodynamic coefficients is introduced as a part of beam permutation technique development. The beam pemlUtation technique is being developed for obtaining an equivalent beam to a frame structure in order to reduce the degrees of freedom and thus the analysis time significantly. Two 3D structures are used in order to verify the obtained equivalent 3D hydrodynamic coefficients. Two commercial softwares, ANSYS and SACS, are used for the verification. The results of the present analysis are found to be satisfactory in comparison with those by the two softwares.

  • PDF

Development of Hydrodynamic Model on the Downstream of Han River by Using Geographical Information System (GIS와 연계한 한강 하류부에서의 동수역학적 수치모형의 개발)

  • Han, Geon-Yeon;Lee, Eul-Rae;Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.2
    • /
    • pp.107-118
    • /
    • 2001
  • This study was to develop a tow-dimensional model system for the hydrodynamic analysis and to apply the system on the downstream of Han River. it is performed to design a GIS-based hydrodynamic system for the scientific shallow water profile analysis, and to compare hydrodraulic modeling is the Petrov-Galerkin's finite element method for flow prediction model. This study was to construct a GIS-based river flow system, and it is useful for supporting user's decision making for the on-line status through various analysis. We expect that the results from this study can be used as one of the guidelines for river analysis and management system in order rivers, reservoirs, and estuaries.

  • PDF

Hydrodynamic Pressure and Shear Stress in Chemical Mechanical Polishing (화학기계적연마 공정의 윤활역학적 압력 및 전단응력 분포 해석)

  • 조철호;박상신;안유민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.179-184
    • /
    • 2000
  • Chemical Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active and abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves hydrodynamic behavior. The liquid slurry is trapped between the work piece and pad forming a hydrodynamic film. For the first step to understand material removal mechanism of the CMP process, the hydrodynamic analysis is done with semiconductor wafer. Three-dimensional Reynolds equation is applied to get pressure distribution of the slurry film. Shear stress distributions on the wafer surface are also analyzed

  • PDF

Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method (수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석)

  • Park, Jong-Ryul;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.628-635
    • /
    • 2001
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The effective masses and heights for the tank contents are presented for engineering design model.

  • PDF

Tow Dimensional Hydrodynamic Study in the Bay by a Mathematical Model (수치모델에 의한 만내의 2차원 동수력학 해석)

  • 한건연;김정역
    • Water for future
    • /
    • v.15 no.4
    • /
    • pp.45-53
    • /
    • 1982
  • The mathematical simulation of tow-dimensional hydrodynamic analysis in the bay was studied. The basic equations of the model consisted of the momentum equations and the continuity equation, and they were analysed by the finite difference method. The Leendertse's multi-operation method was used to solve the equations. For the numerical analysis, the computer program was made to get the velocity distribution was within the range of 10cm/sec and the currents were mainly in the north-south direction, which had a good agreement with the observed data. The methodological procedure made in this paper will provide a basic contribution to hydrodynamic study in the bay.

  • PDF

Battle Damage Analysis of Aircraft Wing Fuel Tanks by Hydrodynamic Ram Effect (항공기 날개 연료탱크의 수압램 전투손상 해석연구)

  • Kim, Jong-Heon;Jeon, Seung-Mun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • Hydrodynamic ram of aircraft fuel tanks is one of main ballistic battle damages of an aircraft and has great importance to airframe survivability design. Basic concept, physics and research history of hydrodynamic ram are investigated. The penetration and internal detonation of a simple fuel tank and ICW(Intermediate Complexity Wing) are analyzed by computational method. Structural rupture and fluid burst are analytically realized using general coupling and coupling surface interaction. The results such as fluid pressure, tank stress and displacement are shown and future research chances are suggested based on the study.