• Title/Summary/Keyword: Hydrocarbon Pyrolysis

Search Result 46, Processing Time 0.022 seconds

Chemical Compositions and Pyrolysis Characteristics of Oil Shales Distributed in Korea

  • Yang, Moon Yul;Yang, Myoung Kee;Lee, Sang Hak;Wakita, Hisanobu
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.487-492
    • /
    • 1995
  • The chemical compositions and pyrolysis characteristics of oil shales and source rocks distributed in the southwestern and southeastern parts of the Korean peninsular have been investigated. In order to compare the results of Korean samples with those of shales giving high oil yields, two Colorado oil shale samples and one Paris source rock samples were also investigated. Chemical compositions of the samples were analysed by means of gravimetry, CHN analysis, X-ray diffraction method, inductively coupled plasma atomic emission spectrometry and atomic absorption spectrometry. A custom made pyrolyser and a Rock-Eval system were used for the pyrolysis studies. Pyrolyses of the samples were carried out by means of a temperature controlling device to $600^{\circ}C$ at a heating rate of $5^{\circ}C/min$ with a helium flow rate of $1200m{\ell}/min$. The results of pyrolysis study indicated that Colorado shale samples belong to type I and all the other samples belong to type II.

  • PDF

Technical Analysis of Thermal Decomposition Characteristics of Liquid Hydrocarbon Fuels for a Regenerative Cooling System of Hypersonic Vehicles

  • Lee, Hyung Ju
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • A technological review and analysis were performed on thermal cracking of aviation hydrocarbon fuels that circulate as coolants in regenerative cooling systems of hypersonic flights. Liquid hydrocarbons decompose into low-carbon-number hydrocarbons when they absorb a considerable amount of energy at extremely high temperatures, and these thermal cracking behaviors are represented by heat sink capacity, conversion ratio, reaction products, and coking propensity. These parameters are closely interrelated, and thus, they must be considered for optimum performance in terms of the overall heat absorption in the regenerative cooling system and supersonic combustion in the scramjet engine.

Thermal Formation of Polycyclic Aromatic Hydrocarbons from Cyclopentadiene (CPD)

  • Kim, Do-Hyong;Kim, Jeong-Kwon;Jang, Seong-Ho;Mulholland, James A.;Ryu, Jae-Yong
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.211-217
    • /
    • 2007
  • Polycyclic aromatic hydrocarbon growth from cyclopentadiene (CPD) pyrolysis was investigated using a laminar flow reactor operating in a temperature range of 600 to $950^{\circ}c$. Major products from CPD pyrolysis are benzene, indene and naphthalene. Formation of observed products from CPD is explained as follows. Addition of the cyclopentadienyl radical to a CPD $\pi$-bond produces a resonance-stabilized radical, which further reacts by one of three unimolecular channels: intramolecular addition, C-H bond $\beta$-scission, or C-C bond $\beta$-scission. The intramolecular addition pathway produces a 7-norbornenyl radical, which then decomposes to indene. Decomposition by C-H bond $\beta$-scission produces a biaryl intermediate, which then undergoes a ring fusion sequence that has been proposed for dihydrofulvalene-to-naphthalene conversion. In this study, we propose C-C bond $\beta$-scission pathway as an alternative reaction channel to naphthalene from CPD. As preliminary computational analysis, Parametric Method 3 (PM3) molecular calculation suggests that intramolecular addition to form indene is favored at low temperatures and C-C bond $\beta$-scission leading to naphthalene is predominant at high temperatures.

Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor

  • Ly, Hoang Vu;Kim, Jinsoo;Kim, Seung-Soo;Woo, Hee Chul;Choi, Suk Soon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2020
  • The bio-oil produced from the fast pyrolysis of lignocellulosic biomass contains a high amount of oxygenates, causing variation in the properties of bio-oil, such as instability, high acidity, and low heating value, reducing the quality of the bio-oil. Consequently, an upgrading process should be recommended ensuring that these bio-oils are widely used as fuel sources. Catalytic fast pyrolysis has attracted a great deal of attention as a promising method for producing upgraded bio-oil from biomass feedstock. In this study, the fast pyrolysis of tulip tree was performed in a bubbling fluidized-bed reactor under different reaction temperatures, with and without catalysts, to investigate the effects of pyrolysis temperature and catalysts on product yield and bio-oil quality. The system used silica sand, ferric oxides (Fe2O3 and Fe3O4), and H-ZSM-5 as the fluidized-bed material and nitrogen as the fluidizing medium. The liquid yield reached the highest value of 49.96 wt% at 450 ℃, using Fe2O3 catalyst, compared to 48.45 wt% for H-ZSM-5, 47.57 wt% for Fe3O4 and 49.03 wt% with sand. Catalysts rejected oxygen mostly as water and produced a lower amount of CO and CO2, but a higher amount of H2 and hydrocarbon gases. The catalytic fast pyrolysis showed a high ratio of H2/CO than sand as a bed material.

A Study on Combustion and Emission Characteristics of Diesel Generator Fuelled with Coffee Ground Pyrolysis Oil (커피박 열분해유를 연료로 사용하는 디젤 발전기의 연소 및 배출물 특성에 관한 연구)

  • PARK, JUNHA;LEE, SEOKHWAN;KANG, KERNYONG;LEE, JINWOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.567-577
    • /
    • 2019
  • Due to the depletion of fossil fuels and environmental pollution, demand for alternative energy is gradually increasing. Among the various methods, a method to convert biomass into alternative fuel has been proposed. The bio-fuel obtained from biomass through pyrolysis process is called pyrolysis oil (PO) or bio-oil. Because PO is difficult to use directly in conventional engines due to its poor fuel properties, various methods have been proposed to upgrade pyrolysis-oil. The simplest approach is to mix it with conventional fossil fuels. However, due to their different polarity of PO and fossil fuel, direct mixing is impossible. To resolve this problem, emulsification of two fuels with a proper surfactant was proposed, but it costs additional time and cost. Alternatively, the use of alcohol fuels as an organic solvent significantly improve the fuel properties such as fuel stability, calorific value and viscosity. In this study, blends of diesel, n-butanol, and coffee ground pyrolysis oil (CGPO) which is one of the promising PO, was applied to diesel generator. Combustion and emissions characteristics of blended fuels were investigated under the entire load range. Experimental results show that ignition delay is similar to that of diesel at high load. Although, hydrocarbon and carbon monoxide emissions are comparable to diesel, significant reduction of nitrogen oxides and particulate matter emissions were observed.

Graphitic Mesostructured Carbon from an Aliphatic Hydrocarbon Precursor

  • Kim, Chy-Hyung;Oh, Teresa
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1978-1980
    • /
    • 2009
  • A mesostructured form of carbon was fabricated from a template of mesostructured silica by using pentane, an aliphatic hydrocarbon precursor. To synthesize the mesostructured silica, a buffered (pH of 6.5) mixture of nonionic Pluronic P123 surfactant, sodium silicate, and acetic acid were used. The impregnated silica with Fe$(CO)_5$ (wt 5%) and pentane was placed in a quartz tube, treated with pentane vapor at 800 ${^{\circ}C}$ for two hours to synthesize the mesostructured carbon. The XRD patterns of the carbon replica in the low/wide angle regions, its TEM images, and nitrogen adsorption-desorption isotherm revealed that the long-range framework order of mesostructure with the pore size centered on 2.8 nm was maintained to some extent mainly due to some portions of mesophase carbon that work as a support to fix the hexagonal frameworks by anchoring on the pore surface with an improved graphitic character. The dc conductivity of the mesostructured carbon in pressed powder form at 6.0 MPa was 2.08 S/cm.

A Study on the Pyrolysis of Waste Tires with Partial Oxidation (부분연소를 통한 폐타이어의 열분해 연구)

  • 이종민;김정래;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.88-91
    • /
    • 1993
  • 유동층 반응기 (H=0.8 m, ID=0.08 m) 에서 폐타이어의 열분해를 수행함에 있어 열분해에 사용되는 열을 외부에서 공급함과 동시에 일부는 내부에서 자체적으로 연소시켜 열을 얻고자 하였다. 온도 증가에 따라 가스의 수율은 40 %까지 증가하였고, 반면에 오일의 수율은 감소하였다. 또한 가스중에 heavy hydrocarbon 이 감소함과 동시에 H$_2$ 및 light hydrocarbon 이 증가하였고 이로 인해 가스 부피당 발열량은 감소하는 것으로 나타났다. 가스의 체류시간도 가스조성에 상당히 영향을 미치는 것으로 나타났으며, 본 시스템에서 발열량 및 가스생성량은 2 u$_{mf}$ 에서 최소치를 나타내는 것으로 보였다. 또한 $O_2$ 농도의 증가는 결국에는 생성가스의 연소를 일으키며, 적당한 $O_2$ 농도의 설정으로 이의 연소를 최소화하는 작업이 필요하다.

  • PDF

Characteristics of Pyrolysis Oils from Saccharina japonica in an Auger Reactor (Auger 반응기에서 제조한 다시마 유래 열분해오일의 특성)

  • Choi, Jae-Wook;Son, Deokwon;Suh, Dong Jin;Kim, Hwayong;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.70-76
    • /
    • 2018
  • Pyrolysis of Saccharina japonica in an Auger reactor was conducted by varying the temperature and the auger speed and then physicochemical properties of the S. japonica-derived pyrolysis oil were analyzed. The maximum yield of S. japonica-derived pyrolysis oil (32 wt%) was obtained at a pyrolysis temperature of $412^{\circ}C$ and an auger speed of 20 rpm. Due to low carbon content and high oxygen content in the pyrolysis oil, the higher heating value of S. japonica-derived pyrolysis oil was $23.6MJ\;kg^{-1}$, which was about 60% that of conventional hydrocarbon fuels. By GC/MS analysis, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone and isosorbide were identified as the main chemical compounds of S. japonica-derived pyrolysis oil. The bio-char has low higher heating value ($13.0MJ\;kg^{-1}$) due to low carbon content and high oxygen content and contains a large amount of inorganic components and sulfur.

Study on the Pyrolysis of Glycyrrhizic acid and Glycyrrhetinic acid (Glycyrrhizic acid 와 Glycyrrhetinic acid의 열분해에 관한 연구)

  • 이문수;김옥찬
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.8 no.2
    • /
    • pp.59-66
    • /
    • 1986
  • The Pyrolytic behavior of glycyrrhizic acid and glycyrrhetini c acid, which are natural flavorants for manufactured cigarettes was observed to find its contribution to the smoke composition. Pyrolyzates of them at 800t were identified using a gas chromatography and a mass spectrometer. According to the analysis of the pyrolytic Products, 43 different compounds were identified Among them the aromatic hydrocarbon compounds were found to be the major products.

  • PDF

Preparation of Bio-oil from Ginkgo Leaves through Fast Pyrolysis and its Properties (은행잎 바이오매스로부터 급속 열분해를 통한 바이오-오일 생산 및 특성 연구)

  • In-Jun Hwang;Jae-Rak Jeon;Jinsoo Kim;Seung-Soo Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.200-216
    • /
    • 2023
  • Ginkgo leaves are considered waste biomass and can cause problems due to the strong insecticidal actions of ginkgolide A, B, C, and J and bilobalide. However, Ginkgo leaf biomass has high organic matter content that can be converted into fuels and chemicals if suitable technologies can be developed. In this study, the effect of pyrolysis temperature, minimum fluidized velocity, and Ginkgo leaf size on product yields and product properties were systematically analyzed. Fast pyrolysis was conducted in a bubbling fluidized bed reactor at 400 to 550℃ using silica sand as a bed material. The yield of pyrolysis liquids ranged from 33.66 to 40.01 wt%. The CO2 and CO contents were relatively high compared to light hydrocarbon gases because of decarboxylation and decarbonylation during pyrolysis. The CO content increased with the pyrolysis temperature while the CO2 content decreased. When the experiment was conducted at 450℃ with a 3.0×Umf fluidized velocity and a 0.43 to 0.71 mm particle size, the yield was 40.01 wt% and there was a heating value of 30.17 MJ/kg, respectively. The production of various phenol compounds and benzene derivatives in the bio-oil, which contains the high value products, was identified using GC-MS. This study demonstrated that fast pyrolysis is very robust and can be used for converting Ginkgo leaves into fuels and thus has the potential of becoming a method for waste recycling.