• Title/Summary/Keyword: Hydrocarbon Flow Measurement

Search Result 7, Processing Time 0.022 seconds

Custody Transfer Hydrocarbon Flow Measurement with Multi-path Ultrasonic Flow Measurement (다회선 초음파 유량계를 이용한 거래용 오일유량 측정)

  • Hwang, Shang-Yoon;Lee, Ho-June;Park, Ki-Hwan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.149-153
    • /
    • 2003
  • As the fastest growing flowmeter technology, multi-path ultrasonic flow-meters are gaining wider range in petroleum industry for liquid hydrocarbon custody transfer measurement. This paper describes the mult-path ultrasonic flowmeter, URO-Ex1000 the requirements necessary to prove and test in Korea & China. URO-Ex1000 haver a good results with accuracy range, but a little exceed with repeatability.

  • PDF

토양내 탄화수소계 화합물의 농도측정 기법에 대한 TDR(Time Domain Reflectometry)적용 가능성 연구

  • 박민수;김동주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.201-205
    • /
    • 1998
  • Leakage of hydrocarbon compound from underground storage tank has been a significant issue to the hazard of environmental contaminants. It is therefore necessary to develop the measurement technique of hydrocarbon compound concentration. In this study, the possibility of TDR application to measure concentration of hydrocarbon compound, especially diesel, in a sandy soil was investigated. Experiments were conducted in two different conditions. The first one was to measure the resistances of the soil columns packed according to the various ratios of tab water and diesel content in the total voids. The other was to measure the resistance of the soil under the flow condition where diesel oil was allowed to infiltrate into the KCl-saturated soil column. The experimental results showed that there exists a significant relationship between oil% and TDR-measured resistance. This suggests that TDR can be an effective device to measure the concentration of hydrocarbon compound in a soil.

  • PDF

Performance and Emission Characteristics of a CNG Engine Under Different Natural Gas Compositions (천연가스 조성 변화에 따른 CNG 엔진 성능 및 배기가스 특성)

  • Ha, Young-Cheol;Lee, Seong-Min;Kim, Bong-Gyu;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.749-755
    • /
    • 2011
  • The performance and emission characteristics of a CNG (compressed natural gas) engine were experimentally investigated under different natural gas compositions. The engine specifications were as follows: 6606 cc, turbo, lean-burn-type; its ignition timing was fixed for the fuel gas with a HHV (higher heating value) of 10454 kcal/$Nm^3$. The experimental results showed that when the HHV of the fuel gas was changed from 10454 kcal/$Nm^3$ to 9811 kcal/$Nm^3$ and 9523 kcal/$Nm^3$, the average power reductions were 3.2 % and 3.4 % (1.5 % and 2.1 %, respectively, with A/F control switched off), respectively, and the average thermal-efficiency reductions were 1.1 % and 1.5 % (1.5 % and 2.1%, respectively, with A/F control switched off), respectively. The emissions of $CO_2$, CO, and $NO_x$ decreased as the HHV of the fuel gas was lowered. On the other hand, the emissions of THC (total hydrocarbon) were not consistent, and the extent of change in their emissions was small.

Study on the Method of Measurement the Heat Sink of the Endothermic Catalytic Reaction in the Flow Reactor (흐름형 반응기에서 흡열 촉매반응의 흡열량 측정 방법에 대한 연구)

  • Lee, Tae Ho;Hyeon, Dong Hun;Kim, Sung Hyun;Jeong, Byung Hun;Han, Jeong Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.991-994
    • /
    • 2017
  • In hypersonic aircraft, increase of aerodynamic and engine heat lead thermal load in airframe. It could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which are able to absorb the heat load by undergoing endothermic reactions. In this study, we investigated the method of measuring the heat sink of catalyst by using exo-tetrahydrodicyclopentadiene as a fuel in a packed bed flow reactor similar to the actual reaction conditions.

  • PDF

A Study on Fuel Transport Characteristics in a Port Fuel Injected Sl Engine during Transient Condition (흡기포트 분사방식의 가솔린 엔진에서 급가속시 연료 거동에 관한 연구)

  • 황승환;조용석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, the fuel transport characteristics during transient condition was studied by using a Fast Response Flame Ionization Detector(FRFID). The quantitative measurement method for the inducted fuel mass into cylinder is studied. The inducted fuel mass into the cylinder was estimated by using calculated air-fuel ratio by hydrocarbon concentration of cylinder and air flow model. In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient $\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-off To reduce an air/fuel ratio fluctuation during rapid throttle opening, the appropriate fuel injection rate was obtain from the wall wetting model with empirical coefficients. Result of air/fuel ratio control, air/fuel excursion was reduced.

Experimental Study on the Size Distribution of Diesel Particulate Matter (DPM) (디젤 입자상물질의 크기분포 특성에 관한 실험적 연구)

  • 연익준;권순박;이규원
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • Diesel particulate matter (DPM) is known to be one of the major harmful emissions produced by diesel engines. The majority of diesel particles are in the range of smaller than $I{\mu}\textrm{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Diesel particles are known to have deleterious effects upon human health because they penetrate human respiratory tract and have negative effects on the health. The measurement of the number distribution of nanometer size particles (nanoparticles) in the diesel exhaust emission is important in order to evaluate their environmental and health impact, and to develop new types of diesel particulate filters. In this study, we directly sampled particulate matters emitted from a diesel truck mounted on the chassis dynamometer by a flow separator and dilution system, and measured the nanoparticles using two types of differential mobility analyzers combined with a Faraday cup electrometer (FCE) and a condensation particle counter (CPC). The particle size distributions were analyzed by changing engine operation condition, i.e. ratio of engine loading. The total number concentration of particles were increased with the engine loading ratio and the nanoparticles (less than 50nm) were affected by hydrocarbon (HC) concentration in the diesel exhaust.

The Characteristics of the Appearance and Health Risks of Volatile Organic Compounds in Industrial (Pohang, Ulsan) and Non-Industrial (Gyeongju) Areas

  • Jung, Jong-Hyeon;Choi, Bong-Wook;Kim, Mi-Hyun;Baek, Sung-Ok;Lee, Gang-Woo;Shon, Byung-Hyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.12.1-12.8
    • /
    • 2012
  • Objectives: The aim of this study was to identify the health and environmental risk factors of air contaminants that influence environmental and respiratory diseases in Gyeongju, Pohang and Ulsan in South Korea, with a focus on volatile organic compounds (VOCs). Methods: Samples were collected by instantaneous negative pressure by opening the injection valve in the canister at a fixed height of 1 to 1.5 m. The sample that was condensed in $-150^{\circ}C$ was heated to $180^{\circ}C$ in sample pre-concentration trap using a 6-port switching valve and it was injected to a gas chromatography column. The injection quantity of samples was precisely controlled using an electronic flow controller equipped in the gas chromatography-mass spectrometer. Results: The quantity of the VOC emissions in the industrial area was 1.5 to 2 times higher than that in the non-industrial area. With regards to the aromatic hydrocarbons, toluene was detected at the highest level of 22.01 ppb in Ulsan, and chloroform was the halogenated hydrocarbons with the highest level of 10.19 ppb in Pohang. The emission of toluene was shown to be very important, as it accounted for more than 30% of the total aromatic hydrocarbon concentration. Conclusions: It was considered that benzene in terms of the cancer-causing grade standard, toluene in terms of the emission quantity, and chloroform and styrene in terms of their grades and emission quantities should be selected for priority measurement substances.