• 제목/요약/키워드: Hydrocarbon Emission

검색결과 212건 처리시간 0.022초

DEVELOPMENT ON ENHANCED LEAKED FUEL RECIRCULATION DEVICE OF LPLi ENGINE TO SATISFY SULEV STANDARD

  • Myung, C.L.;Kwak, H.;Park, S.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.407-413
    • /
    • 2006
  • The liquefied petroleum gas(LPG), mixture of propane and butane, has the potential to reduce toxic hydrocarbon emissions and inhibit ozone formation due to its chemical composition. Conventional mixer systems, however, have problems in meeting the future lower emission standards because of the difficulty in controlling air-fuel ratio precisely according to mileage tar accumulation. Liquid Phase LPG injection(LPLi) system has several advantages in more precise fuel metering and higher engine performance than those of the conventional mixer type. On the other hands, leakage problem of LPLi system at the injector tip is a main obstacle for meeting more stringent future emission regulations because these phenomena might cause excessive amount of THC emission during cold and hot restart phase. The main focus of this paper is the development of a leaked fuel recirculation system, which can eliminate the leaked fuel at the intake system with the activated carbon canister. Leaked fuel level was evaluated by using a fast response THC analyzer and gas chromatography. The result shows that THC concentration during cold and hot restart stage decreases by over 60%, and recirculation system is an effective method to meet the SULEV standard of the LPLi engine.

차량 추적을 위한 이동형 자동차 배출가스 측정시스템(MEL) 구축 (A Mobile Emission Laboratory for Car Chasing Experiment)

  • 이석환;김홍석;이승재;배귀남
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.109-116
    • /
    • 2011
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions a mobile emission laboratory (MEL) was designed and built in KIST with close-cooperation with KIMM and Yonsei university. The equipment of the mini-van provides gas phase measurements of CO, NOx, $CO_2$, THC (Total hydrocarbon) and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the construction and technical details of the MEL and presents data from the car chasing experiment of diesel and CNG city bus. The dilution ratio was increased rapidly according to the chasing distance. Most particles from the diesel city bus were counted under 300 nm and the peak concentration of the particles was located between 40-60 nm. However, the most particles from the CNG city bus were nano particle counted under 50 nm.

SI엔진에서 바이오에탄올-가솔린 혼합율 및 공연비 변화에 따른 연소 및 배기배출물 특성에 관한 연구 (A Study on the Combustion and Exhaust Emission Characteristics with the Variations of Mixing and Air-fuel Ratio of Bio-ethanol - Gasoline in a SI Engine)

  • 윤승현;하성용
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.358-364
    • /
    • 2016
  • The combustion and exhaust emission characteristics in a spark ignition (SI) engine with various test fuels (bioethanol - gasoline blends) and air-fuel ratio were investigated in this research. To investigate the influence of the excess air ratio and ethanol blends on the combustion characteristics such as the cylinder pressure, rate of heat release (ROHR), and fuel consumption rate were analyzed. In addition, the reduction effects of exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), and oxides of nitrogen (NOx) were compared with those of neat gasoline fuel under the various excess-air ratios. The results showed that the peak combustion pressures and the ROHR of bioethanol fuel cases were slightly higher than those of gasoline fuel at all test ranges and fuel ratio. As compared with gasoline fuel (G100) at each given excess air ratio, BSFC of bio-ethanol was increased. The CO, HC, NOx emissions of bio-ethanol blends were lower than those of gasoline fuel under overall experimental conditions.

바이오디젤 연료 압축착화 엔진의 당량비 변화가 연소 및 배출물특성에 미치는 영향 (Effect of Equivalence Ratio on the Combustion Characteristics in a CI Engine Fueled with Biodiesel)

  • 강민구;권석주;차준표;임영관;박성욱;이창식
    • 한국연소학회지
    • /
    • 제16권3호
    • /
    • pp.52-58
    • /
    • 2011
  • The purpose of this paper is to investigate the effect of equivalence ratio on the combustion and emission characteristics of a compression ignition engine fueled with biodiesel. In this research, a single-cylinder direct injection engine with 373.3 cc of displacement volume was tested on DC dynamometer. In order to investigate the effect of biodiesel equivalence ratio on combustion characteristics, the experiments were conducted at various equivalence ratios and injection pressures of 40~120 MPa. For investigating engine performance, lambda meter was connected and equivalence ratios was varied from 0.6 to 1.0. In addition, the exhaust emissions such as oxides of nitrogen($NO_X$), hydrocarbon(HC) and carbon monoxide(CO) were measured by exhaust gas analyzer under the various air/fuel ratios. The experimental results show that maximum IMEP was measured at the 0.8 of equivalence ratio. Furthermore, $NO_X$ emission was rapidly decreased as the increase of equivalence ratio. However soot emission was significantly increased according to the increase of equivalence ratio.

자동차에서 배출되는 가스상 유해대기오염물질 (HAPs) 배출량 추정 (Estimation of Gaseous Hazardous Air Pollutants Emission from Vehicles)

  • 김정;장영기;최상진;김정수;서충열;손지환
    • 한국대기환경학회지
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Hazardous Air Pollutants (HAPs) are difficult to measure, analyze and assess for risk because of low ambient concentrations and varieties. Types of HAPs are Volatile organic compounds (VOCs), Polycyclic aromatic hydrocarbon (PAHs) and Aldehydes. HAP emissions from vehicles are a contributor to serious adverse health effects in urban areas. In this study, hazardous air pollutant emissions from road transport vehicles by Non-methane volatile organic compounds (NMVOC) weight fraction and PAHs emission factors are estimated in 2008. The top-five-most hazardous air pollutant emissions were estimated to toluene 864.3 ton/yr, acrolein 690.6 ton/yr, acetaldehyde 554.5 ton/yr, formaldehyde 498.7 ton/yr, propionaldehyde 421.6 ton/yr in 2008. The results for a cancer and non-cancer risk assessment of HAPs emissions show that the major cancer driver is formaldehyde and the non-cancer driver is acrolein.

Effects of Gas Composition on the Performance and Emissions of Compressed Natural Gas Engines

  • Min, Byung-Hyouk;Chung, Jin-Taek;Kim, Ho-Young;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.219-226
    • /
    • 2002
  • Natural gas is considered to be a promising alternative fuel for passenger cars, truck transportation and stationary engines providing positive effects both on the environment and energy security. However, since the composition of natural gas fuel varies with location, climate and other factors, it is anticipated that such changes in fuel properties will affect emission characteristics and performance of CNG (Compressed Natural Gas) engines. The purpose of the present study is to investigate the effects of the difference in gas composition on the engine performance and emission characteristics. The results show that THC (Total Hydrocarbon) decreases with increasing Wl (Wobbe Index) and MCP (Maximum Combustion Potential). On the other hand, it is observed that NOx slightly increases as Wl and MCP increase. The TLHV (Total Lower Heating Value of Intake) is proposed in this study as a potential index for compatibility of gas fuels in a CNG engine. There is a variation in power up to 20% depending on the composition of gas when the A/F ratio and spark timing are flexed for a specific gas fuel.

대형자동차 디젤엔진용 산화촉매의 성능평가에 관한 연구 (A Study on Evaluation of Diesel Oxidation Catalyst for Automotive Heavy-Duty Diesel Engine)

  • 최병철;정필수;명광재;김복석;박광수;박찬국;이진호
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.13-21
    • /
    • 2001
  • Diesel emission control is being addressed worldwide to help preserve the global environment. This paper mainly deals with the effects of oxidation catalysts to reduce emissions from the automotive heavy-duty diesel engine. Two types of the oxidation catalyst with different kinds of precious material were used. An 11 litter displacement diesel engine with turbocharger was operated to evaluate DOC with various engine speed, load conditions under D-13 mode cycle. We could propose the detail emission data of an automotive heavy-duty diesel engine and the characteristics of the conversion efficiency of the DOC under the D-13 mode. It was found that the mean conversion efficiencies of CO and THC were 49.7% and 61% under the D-13 mode test, respectively.

  • PDF

압축점화 가솔린기관의 성능 및 배기특성 (Performance and Emission Characteristics of Compression Ignition Gasoline Engine)

  • 김홍성;김문헌
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.1007-1014
    • /
    • 2003
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to 18$0^{\circ}C$ in the inlet air temperature. The compression ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. For example. the allowable lean limit of air-fuel ratio is extended until 63 at engine speed of 1000 rpm and inlet air temperature of 17$0^{\circ}C$. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

분사시기의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Injection Timing)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.14-22
    • /
    • 2005
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

외부가진 오일 버너의 고효율 저 NOx 배출특성 (Emission Characteristic for High Efficiency and Low NOx of Externally Oscillated Oil Burner)

  • 김성천;송형운;전영남
    • 한국대기환경학회지
    • /
    • 제22권5호
    • /
    • pp.693-700
    • /
    • 2006
  • The important factor for the development of burner is the achievement of low emissions with maintaining combustibility. In case of maintaining high temperature flame and excess air to increase the combustibility, it is possible to achieve high combustion efficiency, due to the reduction of UHC(unborn hydrocarbon), carbon monoxide and soot. However, it is difficult to reduce the thermal NOx produced in the high temperature flame. To solve this problem, we developed externally oscillated oil burner which is possible for the high efficiency combustion and low NOx emission, simultaneously. The experiment of flame characteristics and NOx reduction were achieved according to the variation of frequency, amplitude and air velocity. Frequency, amplitude and air velocity are the most important parameter. The optimum operating conditions are frequency 1,900 Hz, amplitude 3 $V_{pp.}$ and air velocity 6.8 m/s. Reduction of NOx and CO are 47% and 22%, respectively.