• Title/Summary/Keyword: Hydrocarbon Emission

Search Result 212, Processing Time 0.025 seconds

The Influence of CH3Cl on CH4/CH3Cl/O2/N2 Premixed Flames Under the O2 Enrichment (산소부화 조건인 CH4/CH3Cl/O2/N2 예혼합 화염에서 CH3Cl의 영향)

  • Shin Sung Su;Lee Ki Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.255-262
    • /
    • 2005
  • A comprehensive experimental and numerical study has been conducted to understand the influence of $CH_{3}Cl$ addition on $CH_4/O_2/N_2$ premixed flames under the oxygen enrichment. The laminar flame speeds of $CH_4/CH_{3}Cl/O_2/N_2$ premixed flames at room temperature and atmospheric pressure are experimentally measured using Bunsen nozzle flame technique, varying the amount of $CH_{3}Cl$ in the fuel, the equivalence ratio of the unburned mixture, and the level of the oxygen enrichment. The flame speeds predicted by a detailed chemical kinetic mechanism employed are found to be in excellent agreement with those deduced from experiments. Even though the molar amount of $CH_{3}Cl$ in a methane flame is increased, temperature at the postflame is not significantly varied, but the calculated heat release rate and emission index of NO are largely decreased for the oxygen enhanced flame. The function of $CH_{3}Cl$ as inhibitor on hydrocarbon flames becomes weakened as the level of the oxygen enrichment is increased from 0.21 to 0.5.

The Effect of Exhaust Performance by according to Active Muffler Valve Spring (능동형 소음기의 밸브 스프링이 배기 성능에 미치는 영향)

  • Kong, T.W.;Yi, C.S.;Chung, H.S.;Jeong, H.M.;Suh, J.S.;Chun, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.682-687
    • /
    • 2001
  • This study represents effect of exhaust performance by according to active muffler valve spring. The experimental parameter were divided engine speed and torsion coil spring constant. The sound pressure level was generally low at engine speed 2000-2500rpm but That was showed the lowest at spring constant k=0.75. Flow speed of exhaust gas was showed the fast at spring constant k=0.75 but the low value was showed at k=0.97. It was contained a rather low concentration of carbon monoxide(CO) at engine speed 2000-2500rpm and k=0.81, low concentration of hydrocarbon(HC) at spring constant k=0.81 but that was high at spring constant k=0.97. A conclusion based on FFT analysis was generally low concentration value at k=0.79 and k=0.81. The temperature distributions into the muffler was shown similar conditions. Heat transfer was well spreaded at thermocouple No.8 because valve was opened.

  • PDF

Comparison of Dynamic Behavior of Droplet Mean Diameter with 2holes-2sprays and 4holes-2sprays Types Injector for Gasoline Engine (가솔린 엔진용 2홀 2분류와 4홀 2분류 타입 인젝터의 액적 평균 직경의 동적 거동 비교)

  • Kim, Beom-Jun;Cho, Dae-Jin;Yoon, Suck-Ju
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The influence of fuel spray characteristics on engine performance has been known as one of the major concerns to Improve fuel economy and to reduce exhaust emissions. In general, the UBHC(Unburned Hydrocarbon) emission could be reduced by decreasing the droplet size of the fuel sprays. In PFI (Port Fuel Injection) gasoline engines, the mixture of air and fuel would not be uniform under a certain condition, because the breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve sheat. In this study, were investigated the transient spray characteristics and dynamic behavior of droplets from 2holes-2sprays and 4holes-2sprays type injectors used in PFI gasoline engine. Mean droplet size and optical concentration were measured by LDPA (Laser Diffraction Particle size Analyzer). The variation of droplet mean diameter and optical concentration were measured for understanding the behavior of unsteady spray.

  • PDF

Development of Productivity-based Estimating Tool for Fuel Use and Emissions from Earthwork Construction Activities

  • Hajji, Apif M.;Lewis, Michael Phil
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.2
    • /
    • pp.58-65
    • /
    • 2013
  • Earthwork activities are typically performed by heavy duty diesel (HDD) construction equipment that consumes large quantities of diesel fuel use and emits large quantities of pollutants, including nitrogen oxides (NOx), particulate matters (PM), hydrocarbon (HC), carbon monoxide (CO), and carbon dioxide ($CO_2$). This paper presents the framework for a model that can be used to estimate the production rate, activity duration, total fuel use, and total pollutants emissions for earthwork activities. A case study and sensitivity analysis for an excavator performing excavations are presented. The tool is developed by combining the multiple linear regressions (MLR) approach for modeling the productivity with the EPA's NONROAD model. The excavator data from RSMeans Heavy Construction Data were selected to build the productivity model, and emission factors of all type of pollutants from NONROAD model were used to estimate the total fuel use and emissions. The MLR model for the productivity rate can explain 92% of the variability in the data. Based on the model, the fuel use and emissions of excavator increase as the trench depth increase, but as the bucket size increase, the fuel use and emissions decrease.

Emission Reduction by Mixture Formation in a Diesel-Natural Gas Dual-Fuel Engine at Low Loads (경유-천연가스 이종연료 엔진의 저부하 영역에서 혼합기 형성을 통한 배기배출 저감)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yongkyu;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • A mixture preparation strategy was proposed and evaluated in a diesel-natural gas dual-fuel engine to reduce hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. An experimental investigation was conducted in a single-cylinder compression-ignition engine. Natural gas was supplied with air during the intake stroke, and diesel was injected directly into the combustion chamber during the compression stroke. First, effects of diesel start of energizing (SOE) and natural gas substitution ratio on the combustion and exhaust gas emissions were analyzed. Based on the results, the mixture preparation strategy was established. A low natural gas substitution ratio and a high exhaust gas recirculation (EGR) rate were effective in reducing the HC and CO emissions.

EFFECT OF ADDITIVE ON THE HEAT RELEASE RATE AND EMISSIONS OF HCCI COMBUSTION ENGINES FUELED WITH RON90 FUELS

  • Lu, X.C.;Ji, L.B.;Chen, W.;Huang, Z.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of the di-tertiary butyl peroxide (DTBP) additive on the heat release rate and emissions of a homogeneous charge compression ignition (HCCI) engine fueled with high Research Octane Number (RON) fuels were investigated. The experiments were performed using 0%, 1%, 2%, 3%, and 4% (by volume) DTBP-RON90 blends. The RON90 Fuel was obtained by blending 90% iso-octane with 10% n-heptane. The experimental results show that the operation range was remarkably expanded to lower temperature and lower engine load with the DTBP additive in RON90 fuel. The first ignition phase of HCCI combustion was observed at 850 K and ended at 950 K while the hot ignition occurred at 1125 K for all fuels at different engine working conditions. The chemical reaction scale time decreases with the DTBP addition. As a result, the ignition timing advances, the combustion duration shortens, and heat release rates were increased at overall engine loads. Meanwhile, the unburned hydrocarbon (UHC) and CO emissions decrease sharply with the DTBP addition while the NOx emissions maintain at a lower level.

Chemical Compositions and Pyrolysis Characteristics of Oil Shales Distributed in Korea

  • Yang, Moon Yul;Yang, Myoung Kee;Lee, Sang Hak;Wakita, Hisanobu
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.487-492
    • /
    • 1995
  • The chemical compositions and pyrolysis characteristics of oil shales and source rocks distributed in the southwestern and southeastern parts of the Korean peninsular have been investigated. In order to compare the results of Korean samples with those of shales giving high oil yields, two Colorado oil shale samples and one Paris source rock samples were also investigated. Chemical compositions of the samples were analysed by means of gravimetry, CHN analysis, X-ray diffraction method, inductively coupled plasma atomic emission spectrometry and atomic absorption spectrometry. A custom made pyrolyser and a Rock-Eval system were used for the pyrolysis studies. Pyrolyses of the samples were carried out by means of a temperature controlling device to $600^{\circ}C$ at a heating rate of $5^{\circ}C/min$ with a helium flow rate of $1200m{\ell}/min$. The results of pyrolysis study indicated that Colorado shale samples belong to type I and all the other samples belong to type II.

  • PDF

The effect of fuel evaporation in the intake valve back on mixture preparation (흡기밸브에서의 연료증발이 혼합기 형성에 미치는 영향)

  • 박승현;이종화;유재석;신영기;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.107-115
    • /
    • 1999
  • Hydrocarbon emission from spark ignition engines deeply relates with fuel evaporation mechanism. Therefore, fuel evaporation on the back of the intake valve is very important to understand fuel evaporation mechanism during engine warm up period. Intake valve heat transfer model was build up to estimate the amount of fuel evaporation on the intake valve back . Intake valve temperature was measured intake valve temperature is increased rapidly during few seconds right after engine start up and it takes an important role on fuel evaporation. The liquid fuel evaporation rate on the intake valve back proportionally increases as valve temperature increases, however its contribution slightly decreases as intake port wall temperature increases. The fuel evaporation rate on the valve back is about 40∼60% during engine warm-up period and it becomes about 20∼30% as intake port wall temperature increases. The estimation model also makes possible model also makes possible to review the effect of valve design parameters such as the valve mass and seat area on fuel evaporation rate through intake valve heat transfer.

  • PDF

Concentrations of $C_2$~$C_9$ Volatile Organic Compounds in Ambient Air in Seoul (서울 대기 중에서 $C_2$~$C_9$ 휘발성 유기화합물의 농도)

  • Na, Gwang-Sam;Kim, Yong-Pyo;Kim, Yeong-Seong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • Volatile organic compounds (VOCs) from Ca to C9 were investigated with nine ambient air samples collected in April 26, August 17, 1996 and January 23, 1997 in a Seoul site. On each sampling day, three 2-hr integrated canister samples were collected in early morning, early afternoon and late afternoon, respectively to study temporal . variation of VOCs. Most of VOC species showed diurnal variation with higher concentrations in the early morning and lower concentrations in the afternoon. The concentrations of light alkanes were high, probably due to the emission from liquefied petroleum gas (LPG) and evaporation of gasoline. Especially, the concentration of propane was the highest in the morning samples. The concentrations of propane, ethylene, acetylene, and toluene were prominent in their hydrocarbon groups, respectively. These components were the main source of car exhaust, gasoline evaporization, LPG, or solvent usage.

  • PDF

Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame (불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화)

  • Ahn, Taekook;Lee, Wonnam;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.