• 제목/요약/키워드: Hydrocarbon emissions

검색결과 157건 처리시간 0.022초

가솔린엔진의 금속면온도 및 냉각수로의 전열 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Metal Temperature and Heat Rejection to Coolant of Gasoline Engine)

  • 오창석;유택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.35-41
    • /
    • 2001
  • In recent applications, map controlled thermostat has been adapted to optimize engine cooling system and vehicle cooling system. First of all, this strategy is focused on improving fuel consumption rate and reducing emissions, especially unburned hydrocarbon. The object can be obtained through controlling engine metal temperature by varying engine coolant temperature with engine load and speed. To achieve this goal, it is necessary to understand the characteristics of engine metal temperature and heat rejection rate to coolant. From the results of tested engines, it is obvious that fuel consumption rate has more dominant effect on engine metal temperatures than the corresponding engine power does. Also, Re-Nu relation which shows heat rejection rate to coolant in function of air-fuel mixture and engine specifications has been studied. Also, the empirical Re-Nu relation at full loaded engine was developed.

  • PDF

광주 지역에서 2018년 1월 측정한 초미세먼지의 오염 특성 (Pollution characteristics of PM2.5 observed during January 2018 in Gwangju)

  • 유근혜;박승식;정선아;조미라;장유운;임용재;김영성
    • 한국입자에어로졸학회지
    • /
    • 제15권3호
    • /
    • pp.91-104
    • /
    • 2019
  • In this study, hourly measurements of $PM_{2.5}$ and its major chemical constituents such as organic and elemental carbon (OC and EC), and ionic species were made between January 15 and February 10, 2018 at the air pollution intensive monitering station in Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were collected at the same site and analyzed for OC, EC, water-soluble OC (WSOC), humic-like substance (HULIS), and ionic species. Over the whole study period, the organic aerosols (=$1.6{\times}OC$) and $NO_3{^-}$ concentrations contributed 26.6% and 21.0% to $PM_{2.5}$, respectively. OC and EC concentrations were mainly attributed to traffic emissions with some contribution from biomass burning emissions. Moreover, strong correlations of OC with WSOC, HULIS, and $NO_3{^-}$ suggest that some of the organic aerosols were likely formed through atmospheric oxidation processes of hydrocarbon compounds from traffic emissions. For the period between January 18 and 22 when $PM_{2.5}$ pollution episode occurred, concentrations of three secondary ionic species ($=SO{_4}^{2-}+NO_3{^-}+NH_4{^+}$) and organic matter contributed on average 50.8 and 20.1% of $PM_{2.5}$, respectively, with the highest contribution from $NO_3{^-}$. Synoptic charts, air mass backward trajectories, and local meteorological conditions supported that high $PM_{2.5}$ pollution was resulted from long-range transport of haze particles lingering over northeastern China, accumulation of local emissions, and local production of secondary aerosols. During the $PM_{2.5}$ pollution episode, enhanced $SO{_4}^{2-}$ was more due to the long-range transport of aerosol particles from China rather than local secondary production from $SO_2$. Increasing rate in $NO_3{^-}$ was substantially greater than $NO_2$ and $SO{_4}^{2-}$ increasing rates, suggesting that the increased concentration of $NO_3{^-}$ during the pollution episode was attributed to enhanced formation of local $NO_3{^-}$ through heterogenous reactions of $NO_2$, rather than impact by long-range transportation from China.

The $10-{\mu}m$ Noth-Polar Bightening of Juptier: A Dynamical Phenomenon?

  • Kim, Sang Joon;Seo, Haingja
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.60.2-60.2
    • /
    • 2015
  • Since its detection in 1980, the $8-{\mu}m$ north-polar brightening of $CH_4$ on Juptier has not moved from $180^{\circ}$ (SysIII) longitude. The $8-{\mu}m$ $CH_4$ brightening is mostly thermal and very similar to that of $13-{\mu}m$ $C_2H_2$ emissions, but the morphology of these hydrocarbon north-polar brightenings are very different from that of the $3-{\mu}m$ $H_3{^+}$ auroral oval suggesting a significantly different excitation process yet unknown heating mechanism. Recently, Kim et al. (submitted to Icarus, 2015) found that that the center of the $3-{\mu}m$ $CH_4$ northern bright spot is located at ${\sim}200^{\circ}$ (SysIII) longitude, which is ${\sim}20^{\circ}$ west from the center of the $8-{\mu}m$ north-polar bright spot, and it does not coincide with the $3-{\mu}m$ $H_3{^+}$ bright spot. They found significantly high temperatures (500 ~ 850K) from $CH_4$ rotational lines on the $3-{\mu}m$ bright spot above the $1-{\mu}bar$ pressure level, while we find cooler temperatures (<350K) over the the $8-{\mu}m$ spot. They also found that the upper states of the $3-{\mu}m$ $CH_4$ bands are mostly populated by non-thermal excitations, such as auroral particle precipitations and/or Joule heatings in contrast to the $8-{\mu}m$ thermal emission. This finding indicates that the $10-{\mu}m$ hydrocarbon brightening is confined to low altitudes below the $1-{\mu}bar$ level eliminating the long-suggested possibility of direct auroral bombardments while opening a new possibility of dynamical origin for the $10-{\mu}m$ brightening.

  • PDF

분사기 형상 변경을 통한 저온 디젤 연소의 배기 배출물 저감 (Reduction of Exhaust Emissions Using Various Injector Configurations in Low Temperature Diesel Combustion)

  • 정용진;장진영;박정서;배충식;김득상
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.16-23
    • /
    • 2011
  • Low temperature combustion is one of the advanced combustion technology in an internal combustion engine to reduce soot and nitrogen oxides simultaneously. In present experiment three kinds of injector were used to investigate the influence of injection angle and number of nozzle holes on the low temperature combustion in a heavy duty diesel engine. Low temperature diesel combustion is realized from the exhaust gas recirculation rate of 60%. Indicated mean effective pressure of low temperature combustion corresponds to the 70% level of conventional diesel engine combustion. Reduction of hydrocarbon and carbon monoxide, which are produced in low temperature combustion because of the low combustion temperature and a deficit of oxygen, was achieved by using various injector configuration. The result of experiment with $100^{\circ}$ injection angle and 8 holes showed that reductions in hydrocarbon and carbon monoxide could be achieved 58% and 27% respectively maintaining the 7% increased indicated mean effective pressure in low temperature diesel combustion compared with conventional injector.

혼합기 오존 첨가에 따른 SI기관의 배기배출물 특성 (Exhaust Emissions Characteristics on the SI Engine according to the Air-Fuel Mixture with Ozone)

  • 이병호;이중섭;이용훈;이찬규;정효민;정한식
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.5-10
    • /
    • 2006
  • In a conventional and lean operating engine, the state of mixture is very important in the combustion and emission characteristics. Lean operation is known to decrease the formation while maintaining a good fuel economy, but the unstable operation due to misfire and erratic combustion prevents engines from being operated at very lean mixtures, so both combustion rates and exhaust emission formation need to be satisfied comparably. In this study, it is designed and experimented the modified engine, and analyzed the combustion and exhaust emission according to the change of engine speed and with adding ozone. The conclusions were drawn out and enumerated as follows. 1. At the experimental result of automobile diesel engine, it has been verified that the formation of particulate matter(PM) gas is able to be lower with the addition of optimum quantities of ozone. 2. Carbon monoxide(CO) was formed by the lack of oxygen and the thermal dissociation in the combustion process. Therefore, with the change of swirl valve's position and addition of oxygen and ozone, CO formation was decreased by the increasing of excessive O2, but it was increased by the temperature of combustion gas growing higher. As a result of the two effects, CO formation was decreased in this study. 3. Hydrocarbon(HC) was formed by the lack of O2, and the flow of mixture in cylinder. According to opening of the swirl valve and adding the oxygen and ozone, hydrocarbon gas was decreased by 20%, 9%, and 27.5%, respectively. 4. Nitric oxides($NO_x$) was strongly affected by the combustion gas temperature. As a result of respectively experimental conditions, $NO_x$ formation was increased about 20% due to (be the) high(er) combustion gas temperature.

  • PDF

저발열량 천연가스가 엔진 성능 및 배기특성에 미치는 영향 (Effect of Low Calorific Natural Gas on Performance and Emission Characteristics of Engine)

  • 이성원;임기훈;박철웅;최영;김창기
    • 대한기계학회논문집B
    • /
    • 제37권12호
    • /
    • pp.1129-1135
    • /
    • 2013
  • 본 연구에서는 저발열량 천연가스가 현재 상용되고 있는 대형 천연가스 엔진에 미치는 영향을 살펴보기 위하여 3종류의 연료를 적용하였다. 전부하 운전조건과 WHSC 및 WHTC 모드 테스트를 수행하여 엔진성능 및 배기특성을 분석하였다. 실험결과 전부하 실험에서 토크성능이 $9,800kcal/Nm^3$의 발열량을 갖는 저발열량 가스의 경우 현행 천연가스($10,400kcal/Nm^3$)를 사용한 결과에 비해 4.4% 감소하였다. 저발열량 연료를 사용하였을 때 일산화탄소, 이산화탄소 및 질소산화물의 배출량은 감소하였지만, 탄화수소의 배출량은 증가하였다. WHSC 및 WHTC 실험결과 저발열량 연료에서 열효율이 증가하였으며 배기특성은 전부하 실험결과와 유사한 경향을 보였다. 저발열량 천연가스를 사용할 경우 제원상의 출력을 만족하기 어렵고, 탄화수소의 배출이 증가하는 문제점을 확인하였다.

Comparison of Chemical Composition of Particulate Matter Emitted from a Gasoline Direct Injected (GDI) Vehicle and a Port Fuel Injected (PFI) Vehicle using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

  • Lee, Jong Tae;Son, Jihwan;Kim, Jounghwa;Choi, Yongjoo;Yoo, Heung-Min;Kim, Ki Joon;Kim, Jeong Soo;Park, Sung Wook;Park, Gyutae;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권1호
    • /
    • pp.51-56
    • /
    • 2016
  • Particulate matter (PM) in the atmosphere has wide-ranging health, environmental, and climate effects, many of which are attributed to fine-mode secondary organic aerosols. PM concentrations are significantly enhanced by primary particle emissions from traffic sources. Recently, in order to reduce $CO_2$ and increase fuel economy, gasoline direct injected (GDI) engine technology is increasingly used in vehicle manufactures. The popularization of GDI technique has resulted in increasing of concerns on environmental protection. In order to better understand variations in chemical composition of particulate matter from emissions of GDI vehicle versus a port fuel injected (PFI) vehicle, a high time resolution chemical composition of PM emissions from GDI and PFI vehicles was measured at facility of Transport Pollution Research Center (TPRC), National Institute of Environmental Research (NIER), Korea. Continuous measurements of inorganic and organic species in PM were conducted using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The HR-ToF-AMS provides insight into non-refractory PM composition, including concentrations of nitrate, sulfate, hydrocarbon-like and oxygenated organic aerosol, and organic mass with 20 sec time resolution. Many cases of PM emissions during the study were dominated by organic and nitrate aerosol. An overview of observed PM characteristics will be provided along with an analysis of comparison of GDI vehicle versus PFI vehicle in PM emission rates and oxidation states.

Diesel, DME, Bio-diesel 연료가 실제 도로 주행 조건에서 입자상물질 배출에 미치는 영향 파악 (On-road Investigation of PM Emissions according to Vehicle Fuels (Diesel, DME, and Bio-diesel))

  • 이석환;김홍석;박준혁;조규백
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.88-97
    • /
    • 2012
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, CO2 and THC (Total hydrocarbon), and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the experiment in which a MEL chases a city bus fuelled by diesel, DME and Bio-diesel. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the bus fuelled by diesel were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. However, most particles in the exhaust of the bus fuelled by DME were nano-particles (diameter: less than 50 nm). The bus fuelled by Bio-diesel shows less particle emissions compare to diesel bus due to the presence of the oxygen in the fuel.

다단분사가 초희박 GDI 엔진의 성능 및 배기에 미치는 영향 (Effect of Multiple Injection on the Performance and Emission Characteristics of Lean Burn Gasoline Direct Injection Engines)

  • 오진우;박철웅;김홍석;조규백
    • 대한기계학회논문집B
    • /
    • 제36권2호
    • /
    • pp.137-143
    • /
    • 2012
  • 현재 세계적으로 배출가스 규제 강화와 유가 상승으로 인해 가솔린엔진에서 배출되는 유해 배출 가스 저감기술 및 연비향상 기술 개발이 절실히 요구되고 있다. 가솔린 직접분사(GDI; Gasoline direct injection) 기술은 가솔린 연료를 직접 연소실에 분사하여 정밀한 연소제어를 통해 매우 희박한 혼합기에서도 고효율의 연소가 가능하게 함으로써 연비저감과 고출력을 동시에 만족할 수 있는 효과적인 기술이다. 본 연구에서는 분무유도방식(spray-guided type)을 이용한 GDI 엔진을 개발하여 안정적인 희박연소를 구현하였다. 자주 사용되는 운전영역에서 연료분사시기의 TDC(Top dead center) 인근으로의 지각을 통하여 안정적인 희박연소를 구현하였으며, 다단분사를 적용하여 추가적인 연료소비율의 개선이 가능한 반면 탄화수소(THC)와 질소산화물($NO_x$)의 배출은 증가하고 CO의 배출은 감소되었다.

GDI 엔진의 냉각수온에 따른 연소성능 및 입자상 물질 배출 특성 (Dependence of Nanoparticle and Combustion Characteristics of Gasoline Direct Injection Engines on Coolant Temperature)

  • 이효근;최관희;명차리;박심수;박종일;한승국
    • 대한기계학회논문집B
    • /
    • 제36권2호
    • /
    • pp.131-136
    • /
    • 2012
  • 본 논문에서는 GDI 엔진의 냉각수 온도에 따른 연소 및 배출가스 특성을 연구하였다. 엔진에서 나오는 입자상 물질의 수와 크기 분포는 DMS-500 장비로 측정하였다. 배기포트 에 장착된 CLD-400 과 HFR-400 을 통해 NOx 및 THC 의 배출 특성을 연소주기 별로 측정하였다. 결과적으로 낮은 냉각수온에서 5~10 nm 의 입자상 물질이 크게 증가하는 특성을 보였다. THC 또한 낮은 냉각수온에서 증가하는 특성을 보였는데 이는 연소실 내 연료의 액막현상 때문이다. 그리고 NOx 는 높은 냉각수온에서 감소하는 특성을 보였는데 이는 내부 EGR 이 증가하기 때문이다. 결론적으로 THC 와 NOx 그리고 입자상 물질의 배출을 줄이기 위해서는 냉각수온을 빠르게 올리는 EMS 변수 설정 필요하다.