• Title/Summary/Keyword: Hydro-Forming

Search Result 55, Processing Time 0.032 seconds

Improvement of Connection Force in Hydro-Embedding Process Through the Rotational Piercing of the Connection Element (하이드로 임베딩시 연결요소의 회전을 통한 체결력 개선 연구)

  • Kim, Bong-Joon;Kim, Dong-Kyu;Kim, Dong-Jin;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1503-1508
    • /
    • 2006
  • To increase the applicability and productivity of hydroforming process, hydro-embedding process was developed by combining the hydro-forming process with embedding process simultaneously. It is necessary in the automotive parts to form hollow bodies with connection elements which combine one part with another. The hydro-embedding process is embedding the connection element hydraulically during the operating steps of the hydroforming. In this study, technique of rotational piercing is added on the existing hydro-embedding to increase the connection force of hydro-embedded element. To estimate the feasibility of new trial process, integrated researches on the hydro-embedding process technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters for various shapes of the connection elements.

Effects of Process Parameters owl the Tube Hydroformability (하이드로포밍 성형성에 미치는 공정인자 영향도 해석)

  • 김봉준;김정운;문영훈
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2002
  • The purpose of the present paper is to investigate the effect of Process parameters such as internal pressure, amount of axial feeding, and frictional condition between the die and the material on the tube hydro-formability. For carbon steel tubes(STKM 12A, STBH 410 and SPS 290), simple bulging, circular bulging and Tee-fitting tests are performed to evaluate the hydro-formability of these materials which is determined by deformation characteristics such as thickness distribution, forming height and branch dome shape. The formabilities obtained from these tests are analysed and compared with the results of the numerical simulation.

An approach to improve thickness distribution and corner filling of copper tubes during hydro-forming processes

  • GhorbaniMenghari, Hossein;Poor, Hamed Ziaei;Farzin, Mahmoud;Alves De Sousa, Ricardo J.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.563-573
    • /
    • 2014
  • In hydroforming, the general technique employed to overcome the problem of die corner filling consist in increasing the maximum fluid pressure during the forming process. This technique, in other hand, leads to other difficulties such as thinning and rupturing of the final work piece. In this paper, a new technique has been suggested in order to produce a part with complete filled corners. In this approach, two moveable bushes have been used. So, the workpiece moves driven by both bushes simultaneously. In the first stage, system pressure increases until a maximum of 15 MPa, providing aninitial tube bulge. The results showed that the pressure in this stage have to be limited to 17 MPa to avoid fracture. In a second stage, bushes are moved keeping the constant initial pressure. The punches act simultaneously at the die extremities. Results show that the friction between part and die decreases during the forming process significantly. Also, by using this technique it is possible to produce a part with reasonable uniform thickness distribution. Other outcomes of applying this method are the lower pressures required to manufacture a workpiece with complete filled corners with no wrinkling.

Experimental Studies of the Forming Process for the Tubular Hydroforming Technology (관재 하이드로 포밍에 의한 성형 공정의 실험적 연구)

  • 김성태;임성언;이택근;김영석
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • In this paper, we developed the hydroforming simulator which can apply an axial compressive force and high internal pressure to bulge a tube. Experimental dtudies have been performed to investigate the effect of each parameters such as internal pressure and axial compression stroke required for the forming of circular components. Under the improper forming conditions there were two forming failures. One was the axial buckling due to excessive axial compressive load and the other was the circumferential necking fracture due to relatively high internal pressure. A safe forming zone without any failures exists between these two extreme zones. Also the condition of forming failure such as fracture is examined throughout the theoretical analysis. This paper covers a brief overview of the mechanism of hydroforming process as well as the design of die and tools.

  • PDF

Finite element study on the hydro-embedding process (유한요소 해석법을 이용한 하이드로 임베딩 공정연구)

  • Kim D. K.;Park K. S.;Kim D. H.;Moon Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.206-209
    • /
    • 2004
  • In the hydroforming process the number of process can be reduced by combining pre-forming process and post-forming process such as the bending, piercing and the embedding process. Integrated studies on the embedding manufacturing technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters. In this study, a simulation model that can prove clamping force between the clamping element and tube has been investigated by FEM. The characteristics of the embedded parts, such as the shape of the screw tip, screw thread and shape of thread were investigated at various clamping element conditions.

  • PDF

Effect of Heat Treatments on the Steel Tube Hydroformabillity (열처리 영향도에 따른 강관 하이드로포밍 성형성 분석)

  • Park, Kwang-Soo;Kim, Bong-Joon;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.223-228
    • /
    • 2005
  • Tube hydroforming provides a number of advantages over conventional stamping process, including fewer secondary operation, weight reduction, assembly simplification, adaptability to forming of complex structural components and improved structural strength and stiffness. It can produce wide range of products such as subframe, engine cradle, and exhaust manifold. In this study, the effect of the heat treatment conditions such as post seam annealing (PSA) and bright annealing (BA) on the ovality and hydro-formability of steel tubes has been investigated. Hydroformabilities have been estimated by the bulging heights obtained at various processing parameters such as internal pressure, axial feeding and heat treatment conditions. The ovality and forming height are strongly influenced by material properties after heat treatments.

Micro Pattern Forming on Polymeric Circular Tubes by Hydrostatic Pressing (폴리머 원형 튜브 대상 미세 패턴 정수압 성형)

  • Rhim, S.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.507-512
    • /
    • 2014
  • The objective of the current investigation is to establish techniques in micro pattern forming operations of polymeric circular tubes by using hydrostatic pressing. This method was developed and successfully applied to the micro pattern forming on polymeric plates. The key idea of the new technique is to pressurize multiple vacuum-packed substrate-mold stacks above the glass transition temperature of the polymeric substrates. The new process is thought to be a promising micro-pattern fabrication technique for two reasons; first, (hydro-) isostatic pressing ensures a uniform micro-pattern replicating condition regardless of the substrate area and thickness. Second, multiple curved substrates can be patterned at the same time. With the prototype forming machine for the new process, micro prismatic array patterns, 25um in height and 90 degrees in apex angle, were successfully made on the PMMA circular tubes with diameters of 5~40mm. These results show that this process can be also used in the micro pattern forming process on curved plates such as circular tube.

Studies on the Shape Optimization of Connecting Element for Hydro-Embedding (하이드로 임베딩시 체결용 연결요소의 형상 최적화 연구)

  • Kim B. J.;Kim D. K.;Kim D. J.;Moon Y. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.756-763
    • /
    • 2005
  • The applicability and productivity of hydroforming process can be increased by combining pre- and post-forming processes such as the bending, piercing and embedding process. For the fabrication of automotive parts, the hollow bodies with connecting nuts are widely used to connect parts together. Hollow body with connecting nuts has been conventionally fabricated by welding nuts or screwing in autobody screws. It requires multiple steps and devices fur the welding and/or screwing Therefore in this study, hydro-embedding process that combines the hydraulic embedding of connecting element(nut) with hydroforming process is investigated. Studies on the hydro-embedding technology have been performed to optimize the shape of the connecting element by analyzing the deformed mode of the embedded tube The effects of the shape of the screw tip, screw thread and shape of thread on the connection force between the tube and the connecting element have been investigated to optimize the shape of connecting element. Finite element analysis has also been performed to provide deformation behaviors of the tube surrounding a hole produced by hydro-embedding.

FE Analysis for hydro-mechanical Hole Punching Process (Hydro-mechanical hole punching 공정의 유한요소 해석)

  • Yoon J. H.;Kim S. S.;Park H. J.;Choi T. H.;Lee H. J.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.159-162
    • /
    • 2005
  • The milli-components for electronic and medical device etc. have been manufactured by conventional process. Forming and machining process for those milli-components need tremendous cost and time because products require higher dimensional accuracy than the conventional ones. For instance, conventional mechanical punching process has many drawbacks for applying to high accuracy products. The final radius of hole can be varied and burr which interrupting another procedure is generated. Hydro-mechanical punching process makes possible to reduce amount of burr and obtain the fine shearing surface using the operating fluid. Hydrostatic pressure retards occurrence of initial crack and induces to locate the fracture surface in the middle of sheet to thickness direction. In this paper, Hydro-mechanical punching process is analyzed using finite element method and the effect of hydrostatic pressure is evaluated during punching process. The prediction of fracture is performed adopting the various ductile fracture criteria such as Cockcroft, Brozzo and Oyane's criterion using a user subroutine in ABAQUS explicit.

  • PDF