• Title/Summary/Keyword: Hydrazine Thruster

Search Result 66, Processing Time 0.023 seconds

Development of Lunar Llander Thruster for Ground Test (달 착륙선 지상시험용 추력기 개발)

  • Lee, Jong-Lyul;Kim, In-Tae;Kim, Su-Kyum;Han, Cho-Young;Yu, Myoung-Jong;Kim, Ki-Ro;Byun, Do-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.135-138
    • /
    • 2011
  • As a basic research for the development of Korean lunar lander, propulsion system development for ground test is in progress. Thrust for descent is 200 N class. Design target is 220 N in vacuum thrust at 100 g/s flow rate, 200 psi chamber pressure. For ground test, thrust measurement system using LM guide was developed and test was performed. The result shows 160 N thrust in atmosphere condition at 210 psi chamber pressure.

  • PDF

Hot Firing Performance Measurement of Monopropellant Decomposition Catalyst and Domestic Development Status (단일추진제용 이리듐촉매의 연소성능 측정 및 국내개발 현황)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Kim, Su-Kyum;Jang, Ki-Won;Cho, Sung-June
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.109-117
    • /
    • 2006
  • Hot firing performance test of hydrazine decomposition catalyst used for monopropellant thruster of satellite and launch vehicle was performed on the ground. A test equipment for hot firing performance measurement of catalyst test was developed in collaboration with Hanwha Corp., and the catalyst firing performance were tested with the equipment. After a reaction delay time, a catalyst activity and a granule stability were measured for 2 times, satisfactory results were obtained such as 25msec, 2%, $704^{\circ}C$ for each test items on the average. In addition, the current development status of domestic prototype catalyst and its decomposition performance test results are presented.

Performance improvement of lunar lander thruster (달 착륙선 지상시험용 추력기 성능개선)

  • Lee, Jong-Lyul;Choi, Ji-Yong;Jun, Hyoung-Yoll;Han, Cho-Young;Kim, Su-Kyum;Won, Su-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.42-45
    • /
    • 2012
  • As a basic research for the development of Korean lunar lander, propulsion system development for ground test is in progress. Design target is 220 N in ground thrust at 130 g/s flow rate, 200 psi chamber pressure. For the performance improvement, two type injector and catalyst bed was designed. For ground test, thrust measurement system using LM guide was developed and test was performed. The result shows 214.1 N thrust in atmosphere condition at 126.6 g/s flow rate.

  • PDF

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

Plume Behavior Study of Green FLP-106 ADN Thruster Using DSMC Method (직접모사법을 이용한 친환경 FLP-106 ADN 추력기의 배기가스 거동 연구)

  • Kuk, Jung Won;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.649-657
    • /
    • 2019
  • Hydrazine, which is used as a representative monopropellant, is an extremely poisonous substance and has a disadvantage that it is harmful to the human body and is very difficult to handle. In recent years, research on the development of non-toxic and environmentally friendly propellants has attracted much attention. Ammonium dinitramide(ADN) based propellant developed by Swedish Space Corporation has superior performance to hydrazine and has been commercialized through performance verification in space environment. On the other hand, the exhaust gas from a thruster nozzle collides with a satellite while it is spreading in the vacuum space, thermal load and surface contamination may occur and may reduce the performance and lifetime of the satellite. However, a study on the effect of the exhaust gas of the green propellant thruster on the satellite has not been conducted in earnest yet. Therefore, the exhaust gas behavior in space was analyzed in this study for the ADN based green monopropellant using Navier-Stokes equations and the DSMC method. As a result, it can be expected to be used as design validation data in the development of satellite when using the ADN based green monopropellant.

Development of Hydrazine Thruster Latching Valve (하이드라진 추력기 래칭 밸브 개발)

  • Yoon Ho-Sung;Chae Heon-Jung;Lee Jae-Hun;Cho Nam-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.363-367
    • /
    • 2005
  • Latching valves are operated like solenoid valves by open/close command and they maintain final open or close commend without electric power source, so they are widely used in propulsion system of satellite and launch vehicle requiring reliability and being subject of restriction of power. This paper present design and test procedure of latching valve using permanent magnet polarized solenoid, which is developed for 45N Hydrazine propulsion system, to estimate feasibility of design and manufacture of latching valve.

  • PDF

A Computational Study on the Shock Structure and Thrust Performance of a Supersonic Nozzle with Overexpanded Flow (과대팽창이 발생하는 초음속노즐의 충격파 구조와 추력성능에 대한 수치적 연구)

  • Bae, Dae Seok;Choi, Hyun Ah;Kam, Ho Dong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • Overexpanded flow of an axisymmetric thruster nozzle is numerically simulated to investigate effects of nozzle pressure ratio (NPR) on the shock structure and thrust performance. The Reynolds-averaged Navier-Stokes equations with k-${\omega}$ SST turbulence model are solved utilizing FLUENT solver. As the NPR is raised, thrust performance monotonically increases with the shock structure and flow-separation point being pushed toward the nozzle exit. It is also discussed that the flow structure at nozzle-exit plane which is immediately affected by a position of nozzle-interior shocks and expansion waves, has strong influence upon the thrust performance of thruster nozzle.

Hydrogen Peroxide Monopropellant Thruster for KSLV-II Reaction Control System (한국형발사체 자세제어시스템을 위한 과산화수소 단일추진제 추력기)

  • Oh, Sanggwan;Kang, Shinjae;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.335-343
    • /
    • 2019
  • The third stage of the KSLV-II is equipped with the reaction control system that performs three axis-control during non-thrust coasting phase and performs a roll axis control during thrust phase. Toxic propellants such as hydrazine have been used for conventional rocket propulsions, however, recently, more studies have been conducted on the use of non-toxic eco-friendly propellants such as ADN and HAN. Especially, hydrogen peroxide has received a growing focus as an emerging propellant. It is considered an alternative of the toxic propellants because of economic advantage in producing the system, conducting operation test, and evaluation of the test result. In this paper, we describes the design, prototype, testing and evaluation of the test results with the 50 N-level hydrogen peroxide monopropellant thruster system which is currently under development.

Test and Evaluation of Liquid Mono-propellant Thruster (단일액체추진제 추력기 성능 시험평가)

  • 김정수;한조영;이균호;장기원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.61-64
    • /
    • 2003
  • A comprehensive understanding is given for the hot-firing test results, which were obtained throughout the verification program of mono-propellant hydrazine thrusters producing 0.95 lbf (4.2 Newtons) of nominal steady-state thrust at an inlet pressure of 350 psia (2.41 ㎫). The scrutiny is made in terms of thrust and temperature behavior of steady state firing mode at the given propellant injection pressures of 400, 250, 100, and 50 psi. Engineering philosophy of data measurement and reduction is shortly mentioned, too.

  • PDF

Hot Firing Performances of 1 lbf-Liquid Monopropellant Rocket Engine under the Environment of High Altitude Simulated (고공모사 환경에서의 1 Ibf급 단일액체추진제 로켓엔진 연소성능시험)

  • 김정수;한조영;이균호;황도순;장기원;이재원;강주성;정종록;조대기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.189-192
    • /
    • 2003
  • This paper summarizes a satellite program-specific performance requirements and test results for the verification of standard mono-propellant hydrazine thruster (MRE-1) producing 0.95 lbf (4.2 Newtons) nominal steady-state thrust at an inlet pressure of 350 psia (2.41 Mpa). Performance characteristics are shown in terms of thrust behavior at steady state and pulse mode firing. Hot firing test philosophy is briefly introduced, too.

  • PDF