• 제목/요약/키워드: Hydraulic-Diameter

검색결과 473건 처리시간 0.025초

기포흐름 측정을 위한 영상기법 및 광섬유센서 적용 (Application of Image Technique and Optical Fiber Sensor for Air-water Mixture Flow)

  • 류용욱;정태화
    • 한국수자원학회논문집
    • /
    • 제48권7호
    • /
    • pp.535-543
    • /
    • 2015
  • 기포가 포함된 다상흐름의 측정은 중요함에도 불구하고 많은 제약이 있었다. 특히, 공극률이 높은 다상 흐름은 밀도차의 급격한 변화와 두꺼운 공기-물 경계면으로 인해 측정이 매우 어렵다. 본 연구에서는 공극률에 상관없이 기포흐름을 측정할 수 있는 기포영상유속측정법과 다발 광섬유유동측정계를 소개하고자 한다. 기포영상측정기법의 경우, 화상측정시 발생하는 원근에 의한 오차를 최소화하고 추정할 수 있는 피사계 심도에 대한 계산방법을 제시하여 정도 분석을 위한 방안을 제시하였다. 다발 광섬유유동측정계는 얇은 광섬유의 특성을 이용해 다발로 제작하여 측정률을 증가시키고자 하였다. 제시된 두 기법을 기포플룸에 적용하여 신뢰도를 검토하였으며 잘 일치하는 것을 확인하였다. 소개된 기법으로 대표적인 하천 다상흐름인 도수흐름을 측정하여 그 적용성을 검토하였다.

Perforation optimization of hydraulic fracturing of oil and gas well

  • Zhu, Hai Yan;Deng, Jin Gen;Chen, Zi Jian;An, Feng Chen;Liu, Shu Jie;Peng, Cheng Yong;Wen, Min;Dong, Guang
    • Geomechanics and Engineering
    • /
    • 제5권5호
    • /
    • pp.463-483
    • /
    • 2013
  • Considering the influences of fluid penetration, casing, excavation processes of wellbore and perforation tunnels, the seepage-deformation finite element model of oil and gas well coupled with perforating technique is established using the tensile strength failure criterion, in which the user-defined subroutine is developed to investigate the dynamic evolvement of the reservoir porosity and permeability. The results show that the increases of perforation angle and decreases of perforation density lead to a higher fracture initiation pressure, while the changes of the perforation diameter and length have no evident influences on the fracture initiation pressure. As for initiation location for the fracture in wellbore, it is on the wellbore face while considering the presence of the casing. By contrast, the fractures firstly initiate on the root of the tunnels without considering casing. Besides, the initial fracture position is also related with the perforation angle. The fracture initiation position is located in the point far away from the wellbore face, when the perforation angle is around $30^{\circ}$; however, when the perforation angle is increased to $45^{\circ}$, a plane fracture is initiated from the wellbore face in the maximum horizontal stress direction; no fractures was found around perforation tunnels, when the angel is close to $90^{\circ}$. The results have been successfully applied in an oilfield, with the error of only 1.1% comparing the fracture initiation pressure simulated with the one from on-site experiment.

환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구 (A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Preparation and characterization of inexpensive submicron range inorganic microfiltration membranes

  • Nandi, B.K.;Das, B.;Uppaluri, R.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • 제1권2호
    • /
    • pp.121-137
    • /
    • 2010
  • This work presents inexpensive inorganic precursor formulations to yield submicron range symmetric ceramic microfiltration (MF) membranes whose average pore sizes were between 0.1 and $0.4{\mu}m$. Incidentally, the sintering temperature used in this work was about 800 to $950^{\circ}C$ instead of higher sintering temperatures ($1100^{\circ}C$) that are usually deployed for membrane fabrication. Thermogravimetric (TGA) and X-Ray diffraction (XRD) analysis were carried out to evaluate the effect of temperature on various phase transformations during sintering process. The effect of sintering temperature on structural integrity of the membrane as well as pore size distribution and average pore size were evaluated using scanning electron microscopy (SEM) analysis. The average pore sizes of the membranes were increased from 0.185 to $0.332{\mu}m$ with an increase in sintering temperature from 800 to $950^{\circ}C$. However, a subsequent reduction in membrane porosity (from 34.4 to 19.6%) was observed for these membranes. Permeation experiments with both water and air were carried out to evaluate various membrane morphological parameters such as hydraulic pore diameter, hydraulic permeability, air permeance and effective porosity. Later, the membrane prepared with a sintering temperature of $950^{\circ}C$ was tested for the treatment of synthetic oily waste water to verify its real time applicability. The membrane exhibited 98.8% oil rejection efficiency and $5.36{\times}10^{-6}\;m^3/m^2.s$ permeate flux after 60 minutes of experimental run at 68.95 kPa trans-membrane pressure and 250 mg/L oil concentration. Based on retail and bulk prices of the inorganic precursors, the membrane cost was estimated to be $220 /$m^2$ and $1.53 /$m^2$, respectively.

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

V 형 rib과 dimple로 구성된 SAH 덕트에서의 총괄 열성능에 대한 수치적 연구 (Numerical study on overall thermal performance in SAH duct with compound roughness of V-shaped ribs and dimples)

  • 아닐 쿠마르;김만회
    • 한국태양에너지학회 논문집
    • /
    • 제35권4호
    • /
    • pp.43-55
    • /
    • 2015
  • This paper presents the thermal hydraulic performance of a three dimensional rib-roughened solar air heater (SAH) duct with the one principal wall subjected to uniform heat flux. The SAH duct has aspect ratio of 12.0 and the Reynolds number ranges from 2000 to 12000. The roughness has relative rib height of 0.045, ratio of dimple depth to print diameter of 0.5 and rib pitch ratio of 8.0. The flow attack angle is varied from $35^{\circ}$ to $70^{\circ}$. Various turbulent flow models are used for the heat transfer and fluid flow analysis and their results are compared with the experimental results for smooth surfaces. The computational fluid dynamics (CFD) results based on the renormalization k-epsilon model are in better outcomes compared with the experimental data. This model is used to calculate heat transfer and fluid flow in SAH duct with the compound roughness of V-shaped ribs and dimples. The overall thermal performance based on equal pumping power is found to be the highest (2.18) for flow attack angle of $55^{\circ}$. The thermo-hydraulic performance for V-pattern shaped ribs combined with dimple ribs is higher than that for dimple rib shape and V-pattern rib shape air duct.

초고온원자로 중간열교환기 미니챈널에서의 Molten Salt 열수력 특성 연구 (A Study on the Thermal-Hydraulic Characteristics of Molten Salt in Minichannels of an Intermediate Heat Exchanger for a Very High Temperature Reactor (VHTR))

  • 정희성;황인선;방광현
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1093-1099
    • /
    • 2010
  • 초고온원자로(VHTR) 설계에 있어 중간열수송루프(IHTL) 및 중간열교환기(IHX) 설계는 고온의 운전조건($950^{\circ}C$ 이상)으로 인하여 공학적으로 어려운 과제 중 하나로 알려져있다. 본 연구에서는 LiF, NaF 및 KF(46.5:11.5:42.0 mole %)의 공융혼합물인 Flinak molten salt 를 IHTL 의 열수송매체로 고려하였다. Flinak molten salt 의 세관에서의 열수력 특성을 평가하기 위하여 직경이 1.4 mm 인 원형관을 이용하여 고온의 가스와 Flinak 을 열교환할 수 있는 이중관식 열교환기를 구성하여 실험하였다. 실험 결과 층류유동에서 측정된 Flinak 의 마찰계수는 이론식인 64/Re 에 근접하였고 Nusselt 수는 일반적으로 3.66 에서 4.36 범위에 들었다.

고로쇠나무 줄기의 통수성(通水性)과 통수저항(通水抵抗)의 특성(特性) (The Characteristics of Longitudinal Permeability and Hydraulic Resistance in Stem of Acer mono)

  • 김선희;한상섭
    • 한국산림과학회지
    • /
    • 제89권4호
    • /
    • pp.488-496
    • /
    • 2000
  • 이 연구는 고로쇠나무에 대하여 줄기 변재부(邊材部)의 도관직경(導管直徑) (${\mu}m$)과 단위면적당(單位面積當) 도관수(導管數) (No./$cm^2$)를 실측(實測)하고 이를 기초로 Hagen-Poiseuille의 법칙에 따른 이론식 (Siau, 1971)을 적용하여 단일(單一) 도관(導管) 및 변재(邊材) 단면적(斷面積) 당 통수속도(通水速度)와 통수저항(通水抵抗)의 특성(特性)을 밝히고, 줄기의 직경별(直徑別), 연령별(年齡別) 통수성(通水性) (longitudinal permeability)의 실측치(實測値) (K)와 이론치(理論値) ($K_E$)를 구하여 그 관계를 밝히기 위한 것이다. 단일(單一) 도관(導管)에 대한 통수속도(通水速度) (Q)는 평균(平均) $0.80{\times}10^{-4}cm^3/sec$이고, 통수비항(通水批抗) ($R_S$)은 $1.37{\times}10^{10}dyn{\cdot}sec{\cdot}cm^{-3}{\cdot}cm^{-2}$로 나다났으며, 변재(邊材) 단면적(斷面積)에 대한 통수속도(通水速度) ($Q_N$)는 평균(平均) $0.32cm^3{\cdot}sec{-1}{\cdot}cm^{-2}$이고, 통수저항(通水抵抗) ($R_{SN}$)은 평균(平均) $3.31{\times}10^6dyn{\cdot}sec{\cdot}cm^{-3}{\cdot}cm^{-2}$로 나타났다. 줄기 직경별(直徑別) 통수성(通水性)은 도관직경(導管直徑)보다 단위면적(單位面積) 당 도관수(導管數)의 영향으로 줄기 직경이 커짐에 따라 감소하는 경향을 나타냈다. 흉고부(胸高部)에 있어서 통수성(通水性)의 실측치 K는 이론치(理論値) $K_E$의 평균 31%로 나타났다. 그러나 4~6년생 어린 줄기의 $K/K_E$ 비율은 100%이고, 27년생 이하에서는 90% 이상으로 나타났다. 줄기 각 부위의 K값은 하부로 갈수록 직경과 연령이 증가함에 따라 현저하게 감소하였으며, 특히 근원부(根元部)의 K값은 $K_E$값의 20% 이하로 나타났다.

  • PDF

균질 2상 유동에 놓인 관군에 작용하는 감쇠비에 대한 실험적 연구 (Experimental Study about Two-phase Damping Ratio on a Tube Bundle Subjected to Homogeneous Two-phase Flow)

  • 심우건;닥단방즈락츠
    • 대한기계학회논문집B
    • /
    • 제41권3호
    • /
    • pp.171-181
    • /
    • 2017
  • 2상 횡 유동은 응축기, 증발기와 원자력의 증기 발생기와 같은 열교환기의 튜브와 셀 사이에 존재한다. 공기/물의 2상 유동에 놓인 관군에 작용하는 항력을 실험적으로 평가하였다. 2상 유동에 놓인 관군은 정사각형 배열이다. 피치 직경 비는 1.35이었고, 실린더의 직경은 18 mm이다. 관군에 유동방향으로 작용하는 항력을 측정하여 항력계수와 2상 유동 감쇠비를 계산하였다. 2상 유동 감쇠비는 균질 2상 유동의 이론식을 사용하여 구하여 실험의 결과와 비교하였다. 압력과 항력의 상관계수를 실험결과를 고려하여 평가하였다. 상관계수는 이론적으로 항력을 계산할 때에 사용된다. 질량유량을 증가할수록 측정된 항력으로부터 구한 항력계수와 감쇠비가 균질 유동의 이론적 결과와 잘 일치함을 보이고 있다. 결과적으로 충분히 큰 질량 유량의 기포 유동인 경우에는 감쇠비를 균질 유동에 근거한 이론식으로 계산할 수 있다.

고수부지에 조성한 수질정화 여과습지의 초기운영단계 총인 제거 (Total Phosphorus Removal Rate of a Subsurface-Flow Wetland System Constructed on Floodplain During Its Initial Operation Stage)

  • 양홍모
    • 한국환경복원기술학회지
    • /
    • 제6권6호
    • /
    • pp.49-55
    • /
    • 2003
  • Total phosphorous removal rate was examined of a subsurface-flow treatment wetland system which was constructed on floodplain in the down reach of the Kwangju Stream in Korea from May to June 2001. Its dimensions were 29 meter in length, 9 meter in width and 0.65 meter in depth. A bottom layer of 45 cm in depth was filled with crushed granite with about 15~30 mm in diameter and a middle layer of 10 cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds(Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju Stream flowed from a submerged dam into it via a pipe by gravity flow and treated effluent was funneled back into the Stream. The number of reed stems increased from 80 stems/$m^2$ in July 2001 to 136 stems/$m^2$ in September 2001. The hight of stems was 44.2 cm in July 2001 and 75.3 cm in September 2001. The establishment of reeds at early operating stage of the system was good. Volume and water quality of inflow and outflow were investigated from July 2001 through December 2001. The average inflow was 40 $m^3$/day and hydraulic detention time was about 1.5 days. The concentration of total phosphorous n influent and effluent was 0.83 and 0.33 mg/L, respectively. The removal rate of total phosphorous averaged about 60%. The removal efficiency was slightly higher, compared with that of subsurface-flow wetlands operating in North America, whose retention rate of total phosphorous was reported to be about 56%. The good abatement rate could be attributed to sedimentation of particle phosphorous in pores of the media and adsorption of phosphorous to the biofilm developed on the surface of them. Increase of standing density of reeds within a few years will develop root zones which may lead to increment in the phosphorous retention rate.