• 제목/요약/키워드: Hydraulic measurement

검색결과 408건 처리시간 0.038초

Experimental Investigation of Blade-To-Blade Pressure Distribution in Contra-Rotating Axial Flow Pump

  • Cao, Linlin;Watanabe, Satoshi;Honda, Hironori;Yoshimura, Hiroaki;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권4호
    • /
    • pp.130-141
    • /
    • 2014
  • As a high specific speed pump, the contra-rotating axial flow pump with two rotors rotating reversely has been proved with higher hydraulic and cavitation performance, while in our previous researches, the potential interaction between two blade rows was distinctly observed for our prototype rotors designed with equal rotational speed for both front and rear rotors. Based on the theoretical and experimental evidences, a rotational speed optimization methodology was proposed and applied in the design of a new combination of contra-rotating rotors, primarily in expectation of the optimized blade pressure distributions as well as pertinently improved hydraulic performances including cavitation performance. In the present study, given one stationary and two rotating frames in the contra-rotating rotors case, a pressure measurement concept taking account of the revolutions of both front and rear rotors simultaneously was adopted. The casing wall pressure data sampled in time domain was successfully transferred into space domain, by which the ensemble averaged blade-to-blade pressure distributions at the blade tip of two contra-rotating rotors under different operation conditions were studied. It could be seen that the rotor pair with the optimized rotational speed combination as well as work division, shows more reasonable blade-to-blade pressure distribution and well weakened potential interaction. Moreover, combining the loading curves estimated by the measured casing wall pressure, the cavitation performance of the rotor pairs with new rotational speed combination were proved to be superior to those of the prototype pairs.

수리학적 인자에 의한 한강에서의 홍수위 영향 분석 (Effect of Flood Stage by Hydraulic Factors in Han River)

  • 이을래;김원;김상호
    • 한국수자원학회논문집
    • /
    • 제38권2호
    • /
    • pp.121-131
    • /
    • 2005
  • 본 연구에서는 여러 가지 요인에 의해 발생하는 홍수위의 변화를 분석하기 위해서 홍수추적모형을 이용하였다. 과거 측량된 하상단면자료를 이용하여 모의수행한 결과 합리적인 경계조건 뿐만 아니라 당시의 하상단면에 대한 정확한 측량이 이루어진 경우에 가장 작은 오차를 발생하였다. 지류의 유입규모에 따른 본류부의 수위 상승 효과를 분석한 결과 본류 및 지류의 유량규모가 커질수록 잠수교 및 한강대교에서의 수위변화량이 상당히 작아지는 것을 확인할 수 있었다. 한강하류부 월곶에서 발생하는 조위의 영향에 대한 분석결과 본류 및 지류에서 평상시 유량규모의 경우에는 하류단의 조위의 영향이 상류부로 영향을 미치고 있었으나 계획홍수량의 경우에는 최대만조위가 발생하더라도 운동량의 영향에 의해서 상류부로 영향을 미치지 않고 있었다. 이와 같은 다양한 수리학적 요인에 의한 홍수위 변화량을 분석함으로서 좀 더 체계적이고 실제적인 홍수예경보를 수행할 수 있을 것으로 판단된다.

대수층의 수리특성 연구를 위한 시추공 전기전도도 측정기법의 현장 시험 적용 (Test Application of Electrical Conductivity Measurement in Borehole for Determining Aquifer Properties)

  • 김영화;김지훈;홍정표
    • 지질공학
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2005
  • 전기전도도 측정방법에 의한 수리전도도 측정 기법 개발의 일환으로, 모형 시추공을 이용한 실내 실험에 이은 원위치 현장 적용 시험을 실시하였다. 현장 적용은 사전 현장 적용실험을 거쳐 춘천시 봉명리 강원대학교 산림학습원 구역내에 있는 BM-2와 BM-3의 두 시추공에서 이루어졌다. 두 시추공을 양수정과 측정공으로 서로 번갈아 사용하며 염수 주입과 종료를 기준으로 다수의 시계열 전기전도도 자료를 획득하였다. 이들 시계열 전기전도도 분포곡선의 분석으로부터 공별, 심도별 수리 특성 정보를 얻을 수 있었으며, 원위치 현장 투수시험 방법으로서의 가능성이 확인되었다.

공기유동에 대한 고온상태의 비원형 도과내에서의 열전달 및 압력강하의 측정 (Measurement of Heat Transfer and Friction Coefficients for Flow of Air in Noncircular Ducts At High Surface Temperatures.)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.552-562
    • /
    • 2001
  • Measurement of average of heat transfer and friction coefficients were obtained with air flowing through electrically heated ducts having square, rectangular(aspect ration, 5), and triangular cross section for range of surface temperature from $540^{\circ}$to $1780^{\circ}$ R and Reynolds number from 1000 to 330,000. The results indicates that the effect of heat flux on correlations of the average heat transfer and friction coefficients is similar to that obtained for circular tubes in previous investigation and was nearly eliminated by evaluating the physical properties and density of the air a film temperature halfway between the average surface and fluid bulk temperatures, With the Nusselt and Reynolds numbers on the hydraulic diameter of the ducts, the data for the noncircular ducts could be represented by the same equations obtained in the previous investigation for circular tubes. Correlation of the average difference between the surface corner and midwall temperatures for the square duct was in agreement with predicted values from a previous analysis. However, for the rectangular and triangular ducts, the measured corner temperature was greater by approximately 20 and 35 percent, respectively, than the values predicted by analysis.

  • PDF

Experimental studies on mass transport in groundwater through fracture network using artificial fracture model

  • Tsuchihara Takeo;Yoshimura Masahito;Ishida Satoshi;Imaizumi Masayuki;Ohonishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.676-683
    • /
    • 2003
  • A laboratory experiment using artificial fracture rocks was used to understand the 3-dimensional dispersion of a tracer and the mixing process in a fractured network. In this experiment, 12cm polystyrene foam cubes with two electrodes for monitoring electric conductivity (EC) were used as artificial fractured rocks. Distilled water with 0.5mS/m was used as a tracer in water with 35mS/m and the difference of EC between the tracer and the water was monitored by a multipoint simultaneous measurement system of electrical resistance. The results showed that even if the fracture arrangement pattern was not straight in the direction of the flow, the tracer did not diffuse along individual fractures and an oval tracer plume, which was the distribution of tracer concentrations, tended to be form in the direction of the flow. The vertical cross section of the tracer distribution showed small diffusivity in the vertical direction. The calculated total tracer volume passing through each measurement point in the horizontal cross section showed while that the solute passed through measurement points near the direction of hydraulic gradient and in other directions, the passed tracer volumes were small. Using Peclet number as a criterion, it was found that the mass distribution at the fracture intersection was controlled in the stage of transition between the complete mixing model and the streamline routing model.

  • PDF

Measurement of Heat Transfer Coefficient in Dimpled Channel: Effect of Dimple Arrangement and Channel Height

  • Lee, K.S.;Shin, S.M.;Park, S.D.;Kwak, J.S.;Kang, J.S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.39-44
    • /
    • 2008
  • In this paper, heat transfer coefficients were measured in a channel with one side dimpled surface. The sphere type dimples were fabricated and the diameter and depth of dimple was 16mm and 4mm, respectively. Two channel heights of about 0.6 and 1.2 time of the dimple diameter, two dimple configuration were tested. The Reynolds numbers based on the channel hydraulic diameter was varied from 30000 to 50000. The improved hue detection based transient liquid crystal technique was used in the heat transfer measurement. Heat transfer measurement results showed that high heat transfer was induced downstream of dimples due to flow reattachment. Due to the flow recirculation on the upstream side in the dimple, the heat transfer coefficient was very low. As the Reynolds increased, the overall heat transfer coefficients also increased. With same dimple arrangement, the heat transfer coefficients and the thermal performance factor were higher for the lower channel height. As the distance between dimples became smaller, the overall heat transfer coefficient and the thermal performance factor were increased.

  • PDF

안전한 토석류 관리를 위한 계측기 선정에 관한 연구 (Study of Determination in Measurement System for Safely Managing Debris-Flow)

  • 민대홍;윤형구
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.41-47
    • /
    • 2017
  • Recent studies have shown that there are various systems which can be used to monitor hazardous area in a debris flow location, but lack of methodological research on the exact location where each instrument should be installed has hindered the success of this systems. The objective of this study is to suggest the measurement system for monitoring debris-flow and propose the effective method to determine location of measurement system. Previously studied, from 1991 to 2015, were referred and the applied ratio of every instrument was investigated. The measurement information was divided into 8 categories including rainfall, debris-flow velocity, displacement, fluid pore pressure, ground vibration, image processing, impact force and peak flow depth. The result of this study revealed that the most applied instruments to be rain gauge and geophone for measuring average rainfall and ground vibration respectively. The Analytic Hierarchical Process (AHP) method was selected to determine installation location of instrument and the weighting factors were estimated through fine content, soil thickness, porosity, shear strength, elastic modulus, hydraulic conductivity and saturation. The soil thickness shows highest weights and the fine content relatively demonstrates lowest weights. The score of each position can be calculated through the weighting factors and the lowest score position can be judged as the weak point. The weak point denotes the easily affecting area and thus, the point is suitable for installing the measurement system. This study suggests a better method for safely managing the debris-flow through a precise location for installing measurement system.

심부 급경사 연약층의 채굴 진행에 따른 주변 암반 거동의 탄소성 해석 및 현장계측 (Elasto-plastic Analysis and In-situ Measurement on Rock Behaviors with Stepwise Excavation of the Steep Soft Seam at a Great Depth)

  • 정소걸;신중호
    • 터널과지하공간
    • /
    • 제14권4호
    • /
    • pp.295-303
    • /
    • 2004
  • 연약층과 견고한 암반층이 습곡형태로 혼재된 지질조건의 지하 심부 채굴 현장을 대상으로, 심부 급경사 연약층의 단계적 굴착 진행에 따른 갱도 및 주변 암반의 거동 양상을 전산해석과 현장계측을 통하여 비교 분석하였다. 전산해석에서는 Hoek & Brown의 경험적 파괴기준 및 변형률연화모델을 적용한 탄소성 해석 기법을 이용하였다. 현장계측에서는 유압캡슐, 지중변위계, 내공변위계를 갱도 및 주변 암반에 설치하여 응력과 변위를 계측하였다. 경험적 파괴조건 및 변형률연화모델을 이용한 탄소성 해석은, 현장 지질조건 및 채굴과정의 복잡함에도 불구하고 현장계측결과와 유사한 양상을 보여주어 타당성을 검증할 수 있었다. 이러한 전산해석 및 현장계측의 비교를 통해 지하 굴착 갱도의 변형 거동 과정을 예측하고 이후의 굴착 및 지보보강 설계의 지침을 제공할 수 있을 것이다.

수평 다채널관 내 이산화탄소의 증발 열전달 특성에 관한 실험적 연구 (Experimental study on characteristics of evaporation heat transfer of $CO_2$ in horizontal micro-channel tube)

  • 이상재;김대훈;최준영;이재헌;권영철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2200-2205
    • /
    • 2007
  • In order to investigate the variation on a heat transfer coefficient during evaporation of $CO_2$, basic experiment on the evaporation heat transfer characteristics in a horizontal micro-channel tube was performed. Hydraulic diameters of micro-channels were 0.68 and 1.46 mm. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiments were conducted for various mass fluxes of 300 to 800 kg/$m^2s$, heat fluxes of 10 to 40 kW/$m^2$ and saturation temperatures of -5 to 5$^{\circ}C$. With the increase heat flux, the evaporation heat transfer coefficient increased. And the significantly change of the heat transfer coefficient was observed at any heat flux and mass flux. As the saturation temperature increased and the hydraulic diameter decreased, the heat transfer coefficient increased.

  • PDF

스트레인 게이지를 이용한 C-type LNG Mock-up 탱크 내조 실 변형 거동 측정 (Measurement of Real Deformation Behavior in C-type Lng Mock-up Tank using Strain Gage)

  • 정원도;김태욱;김정현;이도영;전민성;이제명
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.117-124
    • /
    • 2016
  • A C-type LNG mock-up tank was constructed to evaluate the durability of the tank and its structural safety. An experimental strain analysis system equipped with strain gages was designed to investigate the structural behavior of the inner tank at a high hydraulic pressure. In addition, the insulation used in the space between the inner tank and outer tank had a compressive strength and the inner tank thickness of the cylindrical shell and hemisphere was 4.0 mm, which was designed to be thinner than the existing rules. The strains on the inner tank were measured with increasing pressure, and these measurements were compared and analyzed at the strain gage attachment points.