• Title/Summary/Keyword: Hydraulic driving

Search Result 246, Processing Time 0.022 seconds

Structural safety analysis for separator of young Mytilus galloprovincialis in marine farming (지중해담치 양식 어업 치패분리장비의 구조적 안전성 고찰)

  • Yong-Ju LEE;Sang-Hyuk PARK;Ju-Sam PARK
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.328-335
    • /
    • 2023
  • In this paper, among the various facilities used in marine farming, young bivalves of the Mytilus galloprovincialis of marine farming was placed on the deck of the fishing vessel to evaluate the environment conditions and drive shaft movement by rolling affecting the separator for the young bivalves and a clean process. There were a few studies on stress analysis of development facilities because it was difficult to access the fishing site due to the use of imported equipment and the lack of development of domestic equipment. In this study, stress analysis of the fixed part of separator for young bivalves and its adjacent part was performed on various phases when the vessel was tilted by rolling using the finite element method. In addition, the structural safety of the internal blade under the driving conditions according to the movement of the drive shaft by the hydraulic motor was confirmed through structural analysis. As a result, the connection part between the deck and the separator by rolling was confirmed to have higher stress than that of other parts due to stress concentration. In addition, it was confirmed that the maximum stress occurred on the connection part between blades. Even though the safety of the separator for marine farming was confirmed by structural analysis, it is necessary to comprehensively consider the age of vessels, the material of the deck, and the corrosion of the deck.

Assessment of Water and Pollutant Mass Balance by Soil Amendment on Infiltration Trench (침투도랑 토양치환의 물순환 및 비점오염물질저감 효과 평가)

  • Jeon, Minsu;Choi, Hyeseon;Kang, Heeman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • Highways are characterized by high non-point pollutant emissions due to high traffic volumes and sections that cause abrupt change in driving speed (i.e. rest stations, ticketing office, etc.). Most highways in Korea were constructed with layers that do not allow adequate infiltration. Moreover, non-point pollution reduction facilities were not commonly installed on domestic highways. This study was conducted to evaluate a facility treating highway runoff and develop a cost-effective design for infiltration facilities by using soil amendment techniques. Performing soil amendment increased the hydraulic retention time (HRT) and infiltration rate in the facility by approximately 30% and 20%, respectively. The facility's efficiency of removing non-point pollutants (Total Suspend Soiled (TSS), Chemical Oxygen Demand(COD), Biological Oxygen Demand(BOD), Total Nitrogen (TN) and Total Phosphorus, (TP) were also increased by 20%. Performing soil amendment on areas with low permeability can increase the infiltration rates by improving the storage volume capacity, HRT, and infiltration area. The application of infiltration facilities on areas with low permeability should comply with the guidelines presented in the Ministry of Environment's Standards for installation of non-point pollution reduction facilities. However, soil amendment may be necessary if the soil infiltration rate is less than 13 mm/hr.

Numerical Simulation of Irregular Airflow within Wave Power Converter Using OWC by Action of 3-Dimensional Irregular Waves (3차원불규칙파동장하의 진동수주형 파력발전구조물에서 불규칙공기흐름의 수치시뮬레이션)

  • Lee, Kwang-Ho;Park, Jung-Hyun;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.189-202
    • /
    • 2012
  • An Oscillating Water Column (OWC) wave generation system uses the air flow induced by the vertical motion of water column in the air chamber as a driving force of turbine. It is well known that OWC is one of the most efficient devices to harness wave power. This study estimated the air flow velocity from the time variation of the water level fluctuation in the air chamber under regular wave conditions using 3-dimensional numerical irregular wave tank (3D-NIT) model that can simulate the 3-dimensional irregular wave field. The applicability of the 3D-NIT model was validated by comparing numerically predicted air flow velocities with hydraulic experimental results. In addition, the characteristics of air flow frequency spectrum variation due to the incident frequency spectrum change, and the variations of frequency spectrum and wave reflection due to the existence of converter inside the air chamber were discussed. It is found that the phase difference exists in between the air flow velocity and the water level fluctuation inside the air chamber, and the peak frequency of the spectrum in water level fluctuation is amplified by the resonance in the air chamber.

Investigation of Axially Loaded Jacked Pile Behavior by Pile Load Test (말뚝재하시험을 통한 압입강관말뚝의 연직지지거동 분석)

  • Baek, Sung-Ha;Do, Eun-Su;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.39-49
    • /
    • 2018
  • Jacked pile that involves the use of hydraulic jacks to press the piles into the ground is free from noise and vibration, and is possibly installed within a limited construction area. Thus, as an alternative to conventional pile driving methods, pile jacking could become widely accepted for the construction projects in urban area (e.g., reconstruction or remodeling construction projects). Great concern has arisen over the prediction of axially loaded jacked pile behavior. Against this background, a series of pile load tests were hence conducted on a jacked steel pipe pile installed in weathered zone (i.e., weathered soil and weathered rock). From the test results, base resistance and shaft resistance for each test condition were evaluated and compared with the values predicted by the previous driven pile resistance assessment method. Test results showed that the previous driven pile resistance assessment method highly underestimated both the base and shaft resistances of a jacked pile; differences were more obviously observed with the shaft resistance. The reason for this discrepancy is that a driven pile normally experiences a larger number of loading/unloading cycles during installation, and therefore shows significantly degraded stiffness of surrounding soil. Based on the results of the pile load tests, particular attention was given to the modification of the previous driven pile resistance assessment method for investigating the axially loaded jacked pile behavior.

Numerical Hydrodynamic Modeling Incorporating the Flow through Permeable Sea-Wall (투수성 호안의 해수유통을 고려한 유동 수치모델링)

  • Bang, Ki-Young;Park, Sung Jin;Kim, Sun Ou;Cho, Chang Woo;Kim, Tae In;Song, Yong Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.63-75
    • /
    • 2013
  • The Inner Port Phase 2 area of the Pyeongtaek-Dangjin Port is enclosed by a total of three permeable sea-walls, and the disposal site to the east of the Inner Port Phase 2 is also enclosed by two permeable sea-walls. The maximum tidal range measured in the Inner Port Phase 2 and in the disposal site in May 2010 is 4.70 and 2.32 m, respectively. It reaches up to 54 and 27%, respectively of 8.74 m measured simultaneously in the exterior. Regression formulas between the difference of hydraulic head and the rate of interior water volume change, are induced. A three-dimensional numerical hydrodynamic model for the Asan Bay is constructed incorporating a module to compute water discharge through the permeable sea-walls at each computation time step by employing the formulas. Hydrodynamics for the period from 13th to 27th May, 2010 is simulated by driving forces of real-time reconstructed tide with major five constituents($M_2$, $S_2$, $K_1$, $O_1$ and $N_2$) and freshwater discharges from Asan, Sapkyo, Namyang and Seokmoon Sea dikes. The skill scores of modeled mean high waters, mean sea levels and mean low waters are excellent to be 96 to 100% in the interior of permeable sea-walls. Compared with the results of simulation to obstruct the flow through the permeable sea-walls, the maximum current speed increases by 0.05 to 0.10 m/s along the main channel and by 0.1 to 0.2 m/s locally in the exterior of the Outer Sea-wall of Inner Port. The maximum bottom shear stress is also intensified by 0.1 to 0.4 $N/m^2$ in the main channel and by more than 0.4 $N/m^2$ locally around the arched Outer Sea-wall. The module developed to compute the flow through impermeable seawalls can be practically applied to simulate and predict the advection and dispersion of materials, the erosion or deposion of sediments, and the local scouring around coastal structures where large-scale permeable sea-walls are maintained.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.