• Title/Summary/Keyword: Hydraulic control systems

Search Result 548, Processing Time 0.025 seconds

PWM Control of Hydraulic Motor Systems Using High Speed Solenoid Valves (고속응답 전자밸브에 의한 유압 모터계의 PWM 제어)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.387-392
    • /
    • 1999
  • The micro electronic control technology with developing microcomputers make great contribution to electrohydraulic control systems. The electrohydraulic pulse control simplifies in conjunction with power electronic amplifier and high speed operated solenoid valves. It is necessary to valves to convert electronic pulse signal to hydraulic pulse flow as fast as possible. This study deals with the speed control of an oil hydraulic motor operated by two way high speed solenoid valves. The valves acts as converters of electronic-pulse signals to hydraulic power. By constructing systems in which a hydraulic motor is operated by two solenoid valves, the pulse with modulation method (PWM) has adopted as the speed control of hydraulic motor systems. The static and dynamic characteristics of the systems are investigated by the experiment. It is clarify that a hydraulic motor operated PWM show good performance as a control component, achieving accurate velocity control.

  • PDF

Hydraulic Control System Using a Feedback Linearization Controller and Disturbance Observer - Sensitivity of System Parameters -

  • Kim, Tae-hyung;Lee, Ill-yeong;Jang, Ji-seong
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.59-65
    • /
    • 2019
  • Hydraulic systems have severe nonlinearity inherently compared to other systems like electric control systems. Hence, precise modeling and analysis of the hydraulic control systems are not easy. In this study, the control performance of a hydraulic control system with a feedback linearization compensator and a disturbance observer was analyzed through experiments and numerical simulations. This study mainly focuses on the quantitative investigation of sensitivity on system uncertainties in the hydraulic control system. First, the sensitivity on the system uncertainty of the hydraulic control system with a Feedback Linearization - State Feedback Controller (FL-SFC) was quantitatively analyzed. In addition, the efficacy of a disturbance observer coupled with the FL-SFC for the hydraulic control system was verified in terms of overcoming the control performances deterioration owing to system uncertainty.

Nonlinear Hydraulic System Control Using Fuzzy PID Control Technique (퍼지 PID 제어 기법을 이용한 비선형 유압시스템의 제어)

  • 박장호;김종화;류기석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.69-69
    • /
    • 2000
  • Control systems using a hydraulic cylinder as an actuator are modeled to a nonlinear system owing to varying of moments and nonlinearities of hydraulic itself. In this paper, we want to control nonlinear hydraulic systems by adopting the fuzzy PID control technique which include nonlinear time varying control parameters. To do this, we propose the design method of fuzzy Pm controller and in order to assure effectiveness of fuzzy PID controller, computer simulations were executed for the control system.

  • PDF

A Study on the Shock Characteristics in the Hydraulic Power Shifting System of the Hydraulic Travel Motor (유압주행모터의 변속시 발생하는 충격특성에 관한 연구)

  • Lee, Joo-Seong;Lee, Kye-Bock
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.305-310
    • /
    • 2001
  • Hydraulic power shifting systems of hydraulic travel motor may be far safer than mechanical power transmission systems. Thus, hydraulic power shifting systems are widely used for speed control on the hydraulic equipments. In the case of liquid shifting lines, the rapid change of area, such as valve closing, can result in a large pressure transient. It is necessary to assure proper control method in order to obtain the smallest shift shock. This study conducts the shock characteristics of hydraulic power shifting system of the hydraulic travel motor. Experimental results show that shock pressure depends on the operating pressure, flow rate and pipe line area. The shock characteristics can be applied for reducing shocks.

  • PDF

Comparison of Control Performance in Electro.hydraulic Servo Systems (전기.유압 서보 시스템의 제어성능 비교)

  • Kim, D.T.;Park, K.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF

Modeling and Control of a Hydraulic Brake Actuator for Vehcile Collision Avoidance Systems (차량 충돌 회피 시스템을 위한 유압브레이크 액츄에이터의 모델링 및 제어)

  • Jo, Yeong-Ju;Ha, Seong-Hyeon;Lee, Gyeong-Su;Heo, Seung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.537-543
    • /
    • 2000
  • mathematical models for a hydraulic brake actuator and a brake control law for vehicle collision warning/collision avoidance (CW/CA) systems will be presented in this paper. The control law have been designed for optimzied safety and comfort. A solenoid-valve-controlled hydraulic brake actuator system for the CW/CA systems has been investigated, A nonlinear computer model and a linear model of the hydraulic brake actuator system have been developed. Both models were found to represent the actual system with good accuracy. Uncertainties in the brake actuator model have been considered in the design of the control law for the roubustness of the controller. The effects of brake control on CW/CA vehicle response has been investigated via simulations. The simulations were performed using the hydraulic brake system model and a complete nonlinear vehicle model. The results indicate that the proposed brake control law can provide the CW/CA vehicles with an opimized compromise between safety and comfort.

  • PDF

A Hydraulic-Oil Pump System using SR Drive with a Direct Torque Control Scheme

  • Lee, Dong-Hee;Kim, Tae-Hyoung;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.491-498
    • /
    • 2009
  • The hydraulic-oil pump is widely used for building machinery, brake systems of vehicles and automatic control systems due to its high dynamic force and smooth linear force control performance. This paper presents a novel direct instantaneous pressure control of the hydraulic pump system with SRM drive. The proposed hydraulic pump system embeds the pressure controller and direct instantaneous torque controller. Due to the proportional relationship between pump pressure and torque, pressure can be controlled by the motor torque directly. The proposed direct torque controller can reduce inherent torque ripple of SRM, and develop a smooth torque, which can increase the stability of the hydraulic pump. The proposed hydraulic pump system has also fast step response and load response. The proposed hydraulic pump system is verified by computer simulation and experimental results.

Comparative Characteristic Analysis of a Hydraulic Control System Using a Speed Controlled Hydraulic Pump (유압펌프 회전속도 제어방식 유압제어시스템의 특성 비교 분석)

  • Jeong, H.S.;Jeong, S.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.13-19
    • /
    • 2010
  • Hydraulic systems are widely used as a power transfer and/or power control system due to its flexibility, controllability, accuracy and high power density. Valve controlled and/or pump capacity controlled systems are normally adopted as a control device, but nowadays pump speed controlled systems are emerging as a new energy-efficient hydraulic control system. In this paper the pump speed controlled system for the cylinder position control of a counter balance circuit is investigated by simulation study and position control experiments were carried out. As a result, the possibility and efficiency of the pump speed controlled system were verified.

  • PDF

Robust Control of Trajectory Tracking for Hydraulic Excavator (유압 굴삭기의 궤적 추종을 위한 강인 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

Speed Control of Oil Hydaulic Motor Systems Using an Electrohydraulic Servo Valve (전기.유압 서보 밸브를 이용한 유압모터계의 회전수 제어)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.405-410
    • /
    • 1999
  • Hydraulic pipeline between servo valve and actuator affect the dynamic characteristics of electrohydraulic servo systems in serveral ways. This paper deal with the speed control of oil hydraulic gear motor using electrohydraulic servo valve. The frequency and transient response of electrohydraulic servo valve coupled to a gear motor is anlayzed. In particular, the effect of short and long hydraulic pipelines between servo valve and gear motor is investigated. The dynamic characteristics of the speed control systems of gear motor with short pipeline is first described via frequency response experiments with small signal linearized analysis. Loner pipeline is applied distributed parameter pipeline model with consideration of frequency dependent viscous friction.

  • PDF