• Title/Summary/Keyword: Hydraulic clutch

Search Result 55, Processing Time 0.02 seconds

Design of Counter Shaft Automatic Transmission Gear Train Layout for Construction Vehicles (건설중장비용 카운터샤프트 자동변속기 기어열 레이아웃 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.23-31
    • /
    • 2009
  • Counter shaft transmission is a popular automatic transmission power train in construction vehicles such as wheel loader and forklift. The gear train layout of counter shaft transmission is a very basic and important development stage because it affects the most of components design including hydraulic system and shift control algorithm, etc. This paper presents a design methodology for the gear train layout from the analysis of power flow path and clutch hook-up of the existing counter shaft transmission that is adopted in commercialized construction vehicles. Also, independent constraints for the meshed gear ratios are derived in order to realize forward 4-speed and reverse 3-speed gear ratio. The layout design principle proposed here was applied to the new original counter shaft transmission that is underdevelopment.

  • PDF

Development of Regenerative Braking Control Algorithm for a 4WD Hybrid Electric Vehicle (4WD HEV의 회생제동 제어로직 개발)

  • Yeo Hoon;Kim Donghyun;Kim Talchol;Kim Chulsoo;Hwang Sungho;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.38-47
    • /
    • 2005
  • In this paper, a regenerative braking algorithm is proposed to make the maximum use of the regenerative braking energy for an independent front and rear motor drive parallel HEV. In the regenerative braking algorithm, the regenerative torque is determined by considering the motor capacity, motor efficiency, battery SOC, gear ratio, clutch state, engine speed and vehicle velocity. To implement the regenerative braking algorithm, HEV powertrain models including the internal combustion engine, electric motor, battery, manual transmission and the regenerative braking system are developed using MATLAB, and the regenerative braking performance is investigated by the simulator. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC, which recuperates 60 percent of the total braking energy while satisfying the design specification of the control logic. In addition, a control algorithm which limits the regenerative braking is suggested by considering the battery power capacity and dynamic response characteristics of the hydraulic control module.

Study on Accelerated Life Test Design for a Gear Type Lubrication Pump for Automatic Transmission (자동변속기 윤활용 기어펌프의 가속 수명시험 설계에 관한 연구)

  • Park, Jong-Won;Jung, Dong-Soo
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.201-213
    • /
    • 2012
  • A gear type lubrication pump is an essential component of the powertrain and has a major role for supplying oil to the gears and bearings in automatic transmission with a hydraulic clutch. Therefore, the durability test code design of lubrication pump is very important to ensure the reliability of the entire transmission and the vehicle. In this study, the design process for the life testing of lubrication pump has been generalized by four steps. The four design steps of the life testing of lubrication pump consist of the configuration of load spectrum, rain flow counting and analysis of load level, the equivalent damage assessment and test code generation. In fact, the load spectrum should be obtained from the field operating condition but that kind of data is the top secret of manufacturers. This is not open to the public in general. So we could use the artificially simulated load spectrum instead of field obtained one and focused on the development of the general process for designing the life test of a gear type lubrication pump. Reliability goals for lubrication pump, pressure, torque, temperature and load spectrum, if present, as appropriate for the given test conditions, accelerated life testing for the lubrication pump can be designed by the developed design steps.

Power Circulation Characteristics of Hydro-Mechanical transmission System in Steering (정유압 기계식 변속기의 조향시 동력 순환 특성)

  • Kim, J. S.;Kim, W.;Jung, Y. H.;Jung, S. B.;Kim, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Power flow characteristics of a hydro-mechanical transmission system(HMT) are investigated for tracked vehicle in steering. A HMT consisting of two hydrostatic pump motors(HST), several planetary gear trains and steer differential gear is considered. In order to obtain the direction and magnitude of the power flow of the HMT, network theory for the general power transmission is used. Network model for the HMT in steering is developed, which consists of shafts, nodes and transmission elements such as clutch, gear, etc. Power flow analysis procedure consists of two stages : (1) traction force analysis in steering, (2) power flow analysis in HMT. Torque and speed of every transmission element of the HMT is determined from the network analysis. Also, efficiency, mechanical and hydraulic power loss including HST, are obtained. In addition, the regenerative power flow resulting from steering can be studied in graphic display. The power flow analysis program(PCSTEER) developed in this work can be used as a useful design tool for the tracked vehicle with HMT.

  • PDF

Development of a Mobile Tower-yarder with Tractor (I) - Design and Manufacture - (트랙터부착형 타워집재기 개발(I) - 설계 및 제작-)

  • Park, Sang-Jun;Kim, Bo-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This study was conducted to develop a mobile tower-yarder with tractor for agriculture and forestry that is the efficient yarder in steep terrains, thinning operation and small scale logging operation. It was designed and manufactured that the power source of tower-yarder is equiped three hydraulic pump connected to PTO of tractor, and three hydraulic pump is used to operate the four motor for drum, the cylinder for clutch of interlocker, the cylinder for tower expanding and the out-rigger cylinder. It was to adopt the running skyline system and the inter-lock function, and to equip the double capstan drum, the storage drum and the clutch for interlock in the development of tower-yarder. It was to develop the tower-yarder which the winch torque of double-capstan drum, the traction force of double-capstan drum, the number of rotation of double-capstan drum and the line speed is $191kg{\cdot}m$, 1,910 kgf, 220.5 rpm and 138.5 m/min, respectively. And it was known that the optimum flange diameter of the main and haulback storage drum is about 360 mm and about 460 mm in order to storage the main line length of 250m and the haulback line length of 450 m. The carriage was made to adopt the running skyline system and to equip the lock function in order to the convenience of chocking and the fall down preventing of tree. It was provided to develop the wire remote controller for the inter-lock function, the convenience of control and the efficiency of yarding. In development process, this tower-yarder was attached the 3-point linkage hitch equipment and the tire wheel for the traction and moving of tower-yarder. Also, it was equipped that the out-rigger and the guy line in order to raise the safety and efficiency of yarding of tower-yarder.