• Title/Summary/Keyword: Hydraulic bifurcation

Search Result 5, Processing Time 0.018 seconds

Computational Design of Bifurcation: A Case Study of Darundi Khola Hydropower Project

  • Koirala, Ravi;Chitrakar, Sailesh;Neopane, Hari Prasad;Chhetri, Balendra;Thapa, Bhola
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Bifurcation refers to wye division of penstock to divide the flow symmetrically or unsymmetrically into two units of turbine for maintaining economical, technical and geological substrates. Particularly, water shows irrelevant behavior when there is a sudden change in flow direction, which results into the transition of the static and dynamic behavior of the flow. Hence, special care and design considerations are required both hydraulically and structurally. The transition induced losses and extra stresses are major features to be examined. The research on design and analysis of bifurcation is one of the oldest topics related to R&D of hydro-mechanical components for hydropower plants. As far as the earlier approaches are concerned, the hydraulic designs were performed based on graphical data sheet, head loss considerations and the mechanical analysis through simplified beam approach. In this paper, the multi prospect approach for design of Bifurcation, incorporating the modern day's tools and technology is identified. The hydraulic design of bifurcation is a major function of dynamic characteristics of the flow, which is performed with CFD analysis for minimum losses and better hydraulic performances. Additionally, for the mechanical design, a simplified conventional design method as pre-estimation and Finite Element Method for a relevant result projections were used.

Optimization of Hydraulic Bifurcation by Computational Fluid Dynamics (전산해석기법을 이용한 수압분기관의 최적형상 설계)

  • Kang, Seung-Kyu;Kang, Sin-Hyoung;Sung, Nak-Won;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.7-13
    • /
    • 2007
  • This study proposes a modified bifurcation model with a computational fluid analysis according to variation of a bifurcation geometry. FLUENT is used for a calculation of the head losses in case of a generation and a pumping. The pressure, velocity field and turbulent intensity are simulated in a bifurcation. With consideration about these flow properties, we propose the modified model to improve a flow efficiency and reduce a sound. The proposed model is able to cut down a head loss by 45% when a generation and 36% when a pumping.

A Study of Head Loss with Geometry Modification of Bifurcation (수압 분기관 형상 변화에 따른 수두손실 고찰)

  • Kang, Seung-Kyu;Yoon, Joon-Yong;Kang, Sin-Hyoung;Sung, Nak-Won
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.789-795
    • /
    • 2005
  • This study proposes a modified bifurcation model with a computational fluid analysis according to variation of a bifurcation geometry. FLUENT is used for a calculation of the head losses in case of a generation and a pumping. The pressure, velocity field and turbulent intensity are simulated in a bifurcation. With consideration about these flow properties, we propose the modified model to improve a flow efficiency and reduce a sound. The proposed model is able to cut down a head loss by 45% when a generation and 36% when a pumping.

  • PDF

Flat-bottomed design philosophy of Y-typed bifurcations in hydropower stations

  • Wang, Yang;Shi, Chang-zheng;Wu, He-gao;Zhang, Qi-ling;Su, Kai
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1085-1105
    • /
    • 2016
  • The drainage problem in bifurcations causes pecuniary losses when hydropower stations are undergoing periodic overhaul. A new design philosophy for Y-typed bifurcations that are flat-bottomed is proposed. The bottoms of all pipe sections are located at the same level, making drainage due to gravity possible and shortening the draining time. All fundamental curves were determined, and contrastive analysis with a crescent-rib reinforced bifurcation in an actual project was conducted. Feasibility demonstrations were researched including structural characteristics based on finite element modeling and hydraulic characteristics based on computational fluid dynamics. The new bifurcation provided a well-balanced shape and reasonable stress state. It did not worsen the flow characteristics, and the head loss was considered acceptable. The proposed Y-typed bifurcation was shown to be suitable for pumped storage power stations.

Experimental Study about Hydraulic Characteristics at Open Channel Bifurcation (개수로 분기부에서의 수리학적 특성에 관한 실험적 연구)

  • Lee, Dong-Kee;Kim, Chang-Wan;Rhee, Dong-Sop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1286-1290
    • /
    • 2006
  • 방수로는 홍수 피해 경감을 사용되는 구조적 대책으로 최근 국내에서 널리 계획되고 있다. 이러한 방수로는 대체로 보통 횡월류위어 등으로 대표되는 유입부 구조물을 통하여 본류에 연결되지만, 평상시에도 본류의 유량을 일부 분담하는 형태로 설계되는 젖은 하도(wet channel) 형태의 방수로는 별도의 유입부 구조물을 설치하지 않고 바로 본류에 연결되는 것이 일반적인 형태이다. 일반적으로 유입부 구조물을 통해 연결되는 방수로의 특성은 유입부 구조물의 수리학적인 특성에 의해서 많이 좌우된다. 이에 반해 젖은 하도 형태의 방수로는 방수로의 폭(W), 방수로 유입되는 흐름의 유입각$(\theta)$등에 의해서 많이 좌우되며, 만약 설계된 방수로의 횡단면 형상이 사다리꼴 또는 직사각형 단면을 따른다면 이러한 흐름은 '제한된 영위어고 횡월류위어 흐름(restricted zero-height side weir flow)'으로 분류할 수 있다. 이러한 조건에서의 흐름은 일반적인 횡월류위어에서의 흐름과 상당히 다른 것으로 알려져 있다. 본 연구에서는 이러한 방수로 분기 조건을 다양하게 구현할 수 있는 실험 수로를 설치하여 방수로 폭을 변화시키면서 실험을 수행하였으며, 분기 조건의 변화에 따른 분수로 유입부분에서의 수리학적특성을 분석하였다.

  • PDF