• Title/Summary/Keyword: Hydraulic behavior

Search Result 625, Processing Time 0.025 seconds

Mechanical and hydraulic interaction between braced wall and groundwater (흙막이 벽체와 그라우트 특성에 따른 구조.수리상호 작용)

  • Nam, Teak-Soo;Yoon, Jau-Ung;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1172-1177
    • /
    • 2010
  • For the deep excavation in urban area, the braced-cut method is mainly adopted. In this case, inadequate consideration of ground water level may result in wrong prediction of structural behavior. In this study, the effects of hydraulic interaction between wall and grout were investigated using the finite element method. The maximum stress in case of confined ground water condition is obtained at the final excavation stage in the range of 70~80% of excavation depth. The stress of impermeable case is about 50% larger than that of permeable case. When the relative permeabililty of wall-grout become smaller, the stress is getting bigger. And the stress tends to converge in case of 1/100 or less of the relative permeability.

  • PDF

Hot Deformation Behavior of Bearing Steels and Their Optimal Hot Forging Conditions (베어링강의 고온변형특성과 열간 단조조건에 관한 연구)

  • 문호근;이재성;윤선준;전만수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.159-162
    • /
    • 2002
  • In this paper the stress-strain curves of bearing steels at hot working conditions are obtained by compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are obtained by tensile test with a computer controlled servo-hydraulic Gleeble 1500 testing machine. These tests have been focused to obtain the flow stress data and optimal hot forging conditions under various conditions of strain rates and temperatures. The strain rate sensitivity exponent and reduction of area of the materials are evaluated. Experimental results are resented for various conditions of temperatures and strain rates.

  • PDF

Thermal-Hydraulic Analysis of A Wire-Spacer Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.473-478
    • /
    • 2004
  • This work presents the Thermal Hydraulic analysis has been performed for a 19-pin wire-spacer fuel assembly using three-dimensional Reynolds-averaged Navier-Stokes equations. SST model is used as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary condition at inlet and outlet of the calculation domain. The overall results far a preliminary calculation show a good agreement with the experimental observations. It has been found that the major unidirectional flows are the axial velocity in sub-channels and the peripheral sweeping flows and the velocities are found to be following a cyclic path of period equal to the wire-wrap pitch. The temperature is found to be maximum in the central region and also, there exist a radial temperature gradient between the fuel rods. The major advantage of performing this kind of analysis is the prediction of thermal-hydraulic behavior of a fuel assembly with much ease.

  • PDF

Fractal behavior identification for monitoring data of dam safety

  • Su, Huaizhi;Wen, Zhiping;Wang, Feng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.529-541
    • /
    • 2016
  • Under the interaction between dam body, dam foundation and external environment, the dam structural behavior presents the time-varying nonlinear characteristics. According to the prototypical observations, the correct identification on above nonlinear characteristics is very important for dam safety control. It is difficult to implement the description, analysis and diagnosis for dam structural behavior by use of any linear method. Based on the rescaled range analysis approach, the algorithm is proposed to identify and extract the fractal feature on observed dam structural behavior. The displacement behavior of one actual dam is taken as an example. The fractal long-range correlation for observed displacement behavior is analyzed and revealed. The feasibility and validity of the proposed method is verified. It is indicated that the mechanism evidence can be provided for the prediction and diagnosis of dam structural behavior by using the fractal identification method. The proposed approach has a high potential for other similar applications.

Feedforward actuator controller development using the backward-difference method for real-time hybrid simulation

  • Phillips, Brian M.;Takada, Shuta;Spencer, B.F. Jr.;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1081-1103
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) has emerged as an important tool for testing large and complex structures with a focus on rate-dependent specimen behavior. Due to the real-time constraints, accurate dynamic control of servo-hydraulic actuators is required. These actuators are necessary to realize the desired displacements of the specimen, however they introduce unwanted dynamics into the RTHS loop. Model-based actuator control strategies are based on linearized models of the servo-hydraulic system, where the controller is taken as the model inverse to effectively cancel out the servo-hydraulic dynamics (i.e., model-based feedforward control). An accurate model of a servo-hydraulic system generally contains more poles than zeros, leading to an improper inverse (i.e., more zeros than poles). Rather than introduce additional poles to create a proper inverse controller, the higher order derivatives necessary for implementing the improper inverse can be calculated from available information. The backward-difference method is proposed as an alternative to discretize an improper continuous time model for use as a feedforward controller in RTHS. This method is flexible in that derivatives of any order can be explicitly calculated such that controllers can be developed for models of any order. Using model-based feedforward control with the backward-difference method, accurate actuator control and stable RTHS are demonstrated using a nine-story steel building model implemented with an MR damper.

Numerical Model for Thermal Hydraulic Analysis in Cable-in-Conduit-Conductors

  • Wang, Qiuliang;Kim, Kee-Man;Yoon, Cheon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.985-996
    • /
    • 2000
  • The issue of quench is related to safety operation of large-scale superconducting magnet system fabricated by cable-in-conduit conductor. A numerical method is presented to simulate the thermal hydraulic quench characteristics in the superconducting Tokamak magnet system, One-dimensional fluid dynamic equations for supercritical helium and the equation of heat conduction for the conduit are used to describe the thermal hydraulic characteristics in the cable-in-conduit conductor. The high heat transfer approximation between supercritical helium and superconducting strands is taken into account due to strong heating induced flow of supercritical helium. The fully implicit time integration of upwind scheme for finite volume method is utilized to discretize the equations on the staggered mesh. The scheme of a new adaptive mesh is proposed for the moving boundary problem and the time term is discretized by the-implicit scheme. It remarkably reduces the CPU time by local linearization of coefficient and the compressible storage of the large sparse matrix of discretized equations. The discretized equations are solved by the IMSL. The numerical implement is discussed in detail. The validation of this method is demonstrated by comparison of the numerical results with those of the SARUMAN and the QUENCHER and experimental measurements.

  • PDF

Closed loop type MCV(Main Control Valve) for Hydraulic Excavator (유압 굴삭기용 폐루프 타입 MCV(Main Control Valve))

  • Lim T.H.;Lee H.S.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.864-870
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. From the simulation results, fixed spring stiffness of MCV can't satisfy accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing proportional gain is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The simulator can be used to forecastexcavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF

Overload Surge Investigation Using CFD Data

  • Flemming, Felix;Foust, Jason;Koutnik, Jiri;Fisher, Richard K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.315-323
    • /
    • 2009
  • Pressure oscillations triggered by the unstable interaction of dynamic flow features of the hydraulic turbine with the hydraulic plant system - including the electrical design - can at times reach significant levels and could lead to damage of plant components or could reduce component lifetime significantly. Such a problem can arise for overload as well as for part load operation of the turbine. This paper discusses an approach to analyze the overload high pressure oscillation problem using computational fluid dynamic (CFD) modeling of the hydraulic machine combined with a network modeling technique of the hydraulic system. The key factor in this analysis is the determination of the overload vortex rope volume occurring within the turbine under the runner which is acting as an active element in the system. Two different modeling techniques to compute the flow field downstream of the runner will be presented in this paper. As a first approach, single phase flow simulations are used to evaluate the vortex rope volume before moving to more sophisticated modeling which incorporates two phase flow calculations employing cavitation modeling. The influence of these different modeling strategies on the simulated plant behavior will be discussed.

Development of Climbing Hydraulic Robot System's Synchronizing Controller for Construction Automation (시공자동화를 위한 크라이밍 유압로봇시스템의 동기제어 컨트롤러 개발)

  • Cho, Nam-Seok;Kim, Chang-Won;Kim, Dong-In;Lee, Kyu-Won;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.167-169
    • /
    • 2011
  • Construction Automation as a way to solve the problems of lack of skilled labor by decrease in construction population productivity and quality decrease. We are on the way to develop a construction automation system adequate for domestic circumstances in Korea; it is called RCA(Robotic-crane based Construction Automation) system. Climbing hydraulic robot system is a part of RCA system and makes Construction Factory(CF) climb next floor. The controller can control movement needs to be developed for CF safety. Synchronous control the actual field was applied to the controller logic and synchronous control of the process through which the safety has been verified. The purpose of this study that control of climbing hydraulic robot system behavior on real-time, and to improve safety for overall construction automation system through synchronous motion controller.

  • PDF

Experiments on Tension Characteristics of Perforated-type Floating Breakwaters (유공형 부방파제의 장력특성에 관한 실험)

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.514-514
    • /
    • 2017
  • Floating breakwaters were treated as solid bodies without any perforation in previous studies. In this study, however, a floating breakwater is perforated to allow the partial absorption of the energy produced by incident waves and an air chamber is placed in the upper part to control the breakwater draft. A series of laboratory experiments for a floating breakwater installed with a mooring system are carried out. In general, a mooring system can be classified by the number of mooring points, the shape of the mooring lines, and the degree of line tension. In this study, a four-point mooring is employed since it is relatively easier to analyze the measured results. Furthermore, both the tension-leg and the catenary mooring systems have been adopted to compare the performance of the system. In laboratory experiments, the hydraulic characteristics of a floating breakwater were obtained and analyzed in detail. Also, a hydraulic model test was carried out on variable changes by changing the mooring angle and thickness of perforated wall. A hydraulic model was designed to produce wave energy by generating a vortex with the existing reflection method. Analysis on wave changes was conducted and the flow field around the floating breakwater and draft area, which have elastic behavior, was collected using the PIV system. From the test results the strong vortex was identified in the draft area of the perforated both-sides-type floating breakwater. Also, the wave control performance of the floating breakwater was improved due to the vortex produced as the tension in the mooring line decreased.

  • PDF