• Title/Summary/Keyword: Hydraulic Servo System

Search Result 249, Processing Time 0.031 seconds

Velocity Control of Hydraulic Servo System with Heavy Load and Large Capacitya (대부하 대용량 유압 서보 시스템의 속도제어)

  • 이교일;이경수;이대옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.669-672
    • /
    • 1986
  • The velocity control of hydraulic servo system with heavy load and large capacity was investigated through the linear analysis and digital computer simulation. Each part of the nonlinear hydraulic servo system was mathmatically modelled. The result of linear analysis and computer simulation showed that the use of derivative of load pressure as a feedback signal is effective in velocity control.

  • PDF

A Consideration on Load Disturbance Characteristics of Realtime Adaptive Learning Controller based on an Evolutionary algorithms - Application to an Electro Hydraulic Servo System

  • Sung-Ouk;Lee, Jin-Kul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.3-176
    • /
    • 2001
  • Hydraulic servo system has the characteristic of high power in itself, as combining its characteristics with excellent electro equipment that comes from the development of electronics, electro-hydraulic servo system is widely used in industry that are requested high precision and power Electro-hydraulic servo system is characteristic of very strong non-linearity in itself and it is mainly applied the field of the inner or outer fluctuating load or disturbance in industry. Evolutionary computation based on the natural evolutionary process may solve many engineering problems. Algorithms can represent the natural selection in crossovers, mutations, production of the offspring, selection, etc. Nature has already shown is the superiority through ...

  • PDF

Design of Hydraulic & Control System for the Disc Spinning Machine (디스크 스피닝 성형기의 유압 및 제어시스템 설계)

  • Gang, Jung-Sik;Park, Geun-Seok;Gang, E-Sok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.157-165
    • /
    • 2002
  • The design of hydraulic & control system has been developed for the disc spinning machine. The hydraulic system has been designed in the overall system including the vertical & horizontal slide fur spinning works which are controlled by hydraulic servo valves in right & left side, and the clamping slide for holding & pressing blank material in center during spinning process. Based on the design concept of this hydraulic system, model test experiments for hydraulic servo control system is tested to conform confidence and applying possibility. The control system is introduced with the fuzzy-sliding mode controller for the hydraulic force control reacting force as a disturbance, because a fuzzy controller does not require an accurate mathematical model for the generation of nonlinear factors in the actual nonlinear plant with unknown disturbances and a sliding controller has the robustness & stability in mathematical control algorithm. We conform that the fuzzy-sliding mode controller has a good performance in force control for the plant with a strong disturbance. Also, we observe that a steady state error of the fuzzy-sliding mode controller can be reduced better than those of an another controllers.

A Study on Model Identification of Electro-Hydraulic Servo Systems (전기-유압 서보 시스템의 모델규명에 관한 연구)

  • 엄상오;황이철;박영산
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.907-914
    • /
    • 1999
  • This paper studies on the model identification of electro-hydraulic servo systems, which are composed of servo valves, double-rod cylinder and load mass. The identified plant is described as a discrete-time ARX or ARMAX model which is respectively obtained from the identification algorithms of least square error method, instrumental variable method and prediction error method. where a nominal model and the variation of model parameters are quantitatively evaluated.

  • PDF

The design of six degrees of freedom stewart motion platform using high power electro-hydraulic servo control

  • Kim, Young-Dae;Lee, Kwan-Sup;Kim, Chung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1611-1616
    • /
    • 1991
  • A high power stewart platform is designed and manufactured to simulate the 6 degrees of freedom motion of moving vehicle. This paper describes the design of such a motion system including kinematic and kinetic analysis, real time servo control mechanical and hydraulic system configuration, and techniques of regeneration of test records. Discussions are also presented for an algorithm called remote parameter control, which has been developed to compensate the dynamic delay of the electro-hydraulic servo actuators and the nonlinearities of stewart platform.

  • PDF

Robust Control of the Nonlinear Hydraulic Servo System Using a PID Control Technique (PID 제어 기술을 이용한 비선형 유압 시스템의 강인 제어)

  • Yu, Sam-Hyeon;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.850-856
    • /
    • 2001
  • Even though the hydraulic servo system has been widely used in industrial and military equipments since it has a lot of advantages, it is not easy to design controller due to the high nonlinearities and the parametric uncertainties. The dynamic behavior of the real process in the hydraulic servo system differs from that described by its model because the model is linearized. Another reason of the difference is caused by the variety of parameters, since the system parameters of the dynamic equation are affected by the operating conditions such as temperature and pressure. In this study, the designing process of the MRNC with a PID compensator is introduced and applied to the load sensing hydraulic servo system. The results show that the designed controller guarantees the robust control performance despite of both the nonlinearities and the parametric uncertainties.

Design of Force Control System for a Hydraulic Road Simulator Using Quantitative Feedback Theory (정량적 피드백 이론을 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1069-1076
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT(Quantitative Feedback Theory) is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. Tracking specification is satisfied with upper and lower bound tolerances on the steep response of the system to the reference signal. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

Design of Force Control System for a Hydraulic Road Simulator using QFT (QFT 를 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Nan, Yang-Hai;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1109-1114
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

  • PDF

Electro-Hydraulic Converter and Tuning of the Controller (증기터빈 제어계의 전기-유압 신호 컨버터의 특성과 제어기 조정)

  • Kim, Jong-An;Jung, Chang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2581-2583
    • /
    • 2000
  • The performance of the electro-hydraulic servo control mechanism and the electronic servo controller in the steam turbine control system affect greatly upon overall system performance. We have succefully carried out a retrofit project of a 200MW steam control system recently. Here we introduce some acquired knowledge and experience about the servo control system which we actually configured in the project.

  • PDF

A Study on Cycle Time and Power Saving Effect of a Hydraulic Hybrid Injection Molding Machine using a Servo Motor (서보모터를 이용한 유압 하이브리드식 사출성형기의 공정시간 및 절전효과에 관한 연구)

  • Yun, Hongsik;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.15-25
    • /
    • 2020
  • The cycle time and power saving effect of a hydraulic hybrid injection molding machine using a servo motor are considered in this paper. In order to verify control characteristics, such as pressure and speed, experiments were performed with the hydraulic hybrid injection molding machine, clamping force of 110 ton. The power consumption and production cycle time of a conventional hydraulic injection molding machine were measured to compare its performances with the hydraulic hybrid injection molding machine. An injection molding machine with a clamping force of 1300 ton was used as the conventional machine, the hybrid machine was implemented by replacing its induction motors with servo motors. In the remodeled hybrid machine, experiments were performed to investigate how the displacement of the mold clamping pump affects the power consumption and production cycle time. The results showed that the production cycle time of the hybrid injection molding is similar to a conventional hydraulic injection molding machine but with a significant energy saving of about 40%.