• Title/Summary/Keyword: Hydraulic Pressure Test

Search Result 485, Processing Time 0.026 seconds

Report on Extended Leak-Off Test Conducted During Drilling Large Diameter Borehole (국내 대구경 시추공 굴진 중 Extended Leak-Off Test 수행 사례 보고)

  • Jo, Yeonguk;Song, Yoonho;Park, Sehyeok;Kim, Myung Sun;Park, In-Hwa;Lee, Changhyun
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.285-297
    • /
    • 2022
  • We report results of Extended Leak-Off Test (XLOT) conducted in a large diameter borehole, which is drilled for installation of deep borehole geophysical monitoring system to monitor micro-earthquakes and fault behavior of major fault zones in the southeastern Korean Peninsula. The borehole was planned to secure a final diameter of 200 mm (or more) at a depth of ~1 km, with 12" diameter wellbore to intermediate depths, and 7-7/8" (~200 mm) to the bottom hole depth. We drilled first the 12" borehole to approximately 504 m deep and installed American Petroleum Institute standard 8-5/8" casing, then annulus between the casing and bedrock was fully cemented. XLOT was carried out for several purposes such as confirming casing and cementing integrity, measuring rock stress states. To that end, we drilled additional 4 m long open hole interval to directly inject water and pressurize into the rock mass using the upper API casings. During the XLOT, flow rates and interval pressures were recorded in real time. Based on the logs we tried to analyze hydraulic conductivity of the test interval.

Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment (CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.126-139
    • /
    • 1994
  • Best-estimate thermal-hydraulic codes, CATHARE2 V1.2 and RELAP5/MOD3, hate been assessed against the BETHSY 6.2 tc six-inch cold leg break loss-of-coolant accident (LOCA) test. Main objective is to analyze the overall capabilities of the two codes on physical phenomena of concern during the small break LOCA i.e. two-phase critical flow, depressurization, core water level de-pression, loop seal clearing, liquid holdup, etc. The calculation results show that the too codes predict well both in the occurrences and trends of major two-phase flow phenomena observed. Especially, the CATHARE2 calculations show better agreements with the experimental data. However, the two codes, in common, show some deviations in the predictions of loop seal clearing, collapsed core water level after the loop seal clearing, and accumulator injection behaviors. The discrepancies found from the comprision with the experimental data are larger in the RELAP5 results than in the CATHARE2. To analyze the deviations of the two code predictions in detail, several sensitivity calculations have been performed. In addition to the change of two-phase discharge coefficients for the break junction, fine nodalization and some corrections of the interphase drag term are made. For CATHARE2, the change of interphase drag force improves the mass distribution in the primary side. And the prediction of SG pressure is improved by the modification of boundary conditions. For RELAP5, any single input change doesn't improve the whole result and it is found that the interphase drag model has still large uncertainties.

  • PDF

An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 유동분사기 성능에 대한 실험연구)

  • Ryu, Sung Uk;Bae, Hwang;Yang, Jin Hwa;Jeon, Byong Guk;Yun, Eun Koo;Kim, Jaemin;Bang, Yoon Gon;Kim, Myung Joon;Yi, Sung-Jae;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.124-132
    • /
    • 2016
  • In order to estimate the effect of flow distributors connected to an upper nozzle of CMT(Core Makeup Tank) on the thermal-hydraulic characteristics in the tank, a simplified 2 inch Small Break Loss of Coolant Accident(SBLOCA) was simulated by skipping the decay power and Passive Residual Heat Removal System(PRHRS) actuation. The CMT is a part of safety injection systems in the SMART (System Integrated Modular Advanced Reactor). Each test was performed with reliable boundary conditions. It means that the pressure distribution is provided with repeatable and reproducible behavior during SBLOCA simulations. The maximum flow rates were achieved at around 350 seconds after the initial opening of the isolation valve installed in CMT. After a short period of decreased flow rate, it attained a steady injection flow rate after about 1,250 seconds. This unstable injection period of the CMT coolant is due to the condensation of steam injected into the upper part of CMT. The steady injection flow rate was about 8.4% higher with B-type distributor than that with A-type distributor. The gravity injection during hot condition tests were in good agreement with that during cold condition tests except for the early stages.

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.

Evaluation of Soil Disturbance Due to Bucket Installation in Sand (모래지반에서 버켓기초 설치에 의한 지반교란 평가)

  • Kim, Jae-Hyun;Lee, Seung-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.21-31
    • /
    • 2018
  • Bucket foundations are widely used in offshore areas due to their various benefits such as easy and fast installations. A bucket is installed using self-weight and the hydraulic pressure difference across the lid generated by pumping out water from inside the bucket. When buckets are installed in high permeable soil such as sands, upward seepage flow occurs around the bucket tip and interior, leading to a decrease in the effective stress in the soil inside the buckets. This process reduces the penetration resistance of buckets. However, the soil inside and outside the bucket can be disturbed due to the upward seepage flow and this can change the soil properties around the bucket. Moreover, upward seepage flow can create significant soil plug heave, thereby hindering the penetration of the bucket to the target depth. Despite of these problems, soil disturbance and soil plug heave created by suction installation are not well understood. This study aims to investigate the behavior of soil during suction installation. To comprehend the phenomena of soil plug heave during installation, a series of small-scale model tests were conducted with different testing conditions. From a series of tests, the effects of tip thickness of bucket, penetration rate, and self-weight were identified. Finally, soil properties inside the bucket after installation were approximated from the measured soil plug heave.