• Title/Summary/Keyword: Hydraulic Pressure Test

Search Result 483, Processing Time 0.022 seconds

Minimization of Shifting Shock of Tractor PST using SimulationX (SimulationX를 이용한 트랙터 PST 변속 충격 최소화 연구)

  • Eom, Tae Ho;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.36-42
    • /
    • 2018
  • Agricultural tractors require frequent shifting to improve operation efficiency, and PST (Powershift Transmission) is considered as a suitable transmission. However, due to the inherent characteristics of the PST, shocks arise during shifting, which imparts a negative effect on the operator. Therefore, in order to improve the transmission performance of the tractor PST, researches on various methods including the hydraulic system circuit, the engine input speed control, and the mechanical system of the transmission are steadily being conducted. In this study, in order to reduce the impact of PST on a shift based on SimulationX software, we analyzed the characteristics of the input signal of PCV (Pressure Control Valve) through sensitivity analysis and verified the simulation model through actual vehicle test. Optimization was performed for minimizing the shift shock for some of the parameters of the input signal at constant temperature and RPM conditions.

Similarity evaluation of the pump simulation loop in STELLA-2 for conservation of mechanical sodium pump characteristics

  • Jung Yoon ;Jewhan Lee ;Jaehyuk Eoh;Hyungmo Kim ;Dong Eok Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.353-363
    • /
    • 2023
  • The STELLA-2 is a large-scale sodium thermal-hydraulic integral effect test facility and supports the development of PGSFR. The facility adopted Pump Simulation Loop System (PSLS) concept for the mechanical sodium pump in the reference reactor to control and to measure the primary sodium flow. Since the component (mechanical pump) is replaced by the loop, it is very important to evaluate the similarity between the pump and the loop. In this paper, to simulate the characteristic of the mechanical sodium pump, the pressure loss along the various options of the loop was evaluated and the comprehensive validity of each design options was analyzed. Using the similarity criteria based on the Richardson number and Euler number conservation, the PSLS design was finalized and the result was within the acceptable error range. Finally, the result of this study was used for construction of the overall facility, STELLA-2.

Performance Analysis and Test of the Small Piezoelectric-Hydraulic Pump Brake System (소형 압전유압펌프 브레이크 시스템의 성능해석 및 실험)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Nguyen, Anh Phuc;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.49-56
    • /
    • 2018
  • In this paper, the performance analysis and the experiment of the brake system using the small piezoelectric-hydraulic pump were performed. Initially, the 3-D modeling of the brake load components was performed for the construction of the brake system. Subsequently, modeling using the commercial program AMESim was performed. A floating caliper model was used as a load for modeling the brake system. Through the AMESim simulation, load pressure, check valve displacement and flow rate under no load state were calculated, and performance analysis and changes in dynamic characteristics were confirmed by adding brake load. A jig for use in fixing the brake load during performance test was manufactured. The flow rate was assessed under no load condition and load pressure formation experiments were performed and compared with simulation results. Experimental results revealed the maximum load pressure as about 73bar at 130Hz and the maximum flow rate as about 203cc/min at 145Hz, which satisfied the requirement of small- and medium-sized UAV braking system. In addition, simulation results revealed that the load pressure and discharge flow rate were within 6% and 5%, respectively. Apparently, the modeling is expected to be effective for brake performance analysis.

ROSA/LSTF Test and RELAP5 Analyses on PWR Cold Leg Small-Break LOCA with Accident Management Measure and PKL Counterpart Test

  • Takeda, Takeshi;Ohtsu, Iwao
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.928-940
    • /
    • 2017
  • An experiment using the $Prim{\ddot{a}}rkreisl{\ddot{a}}ufe$ Versuchsanlage (PKL) was performed for the OECD/NEA PKL-3 Project as a counterpart to a previous test with the large-scale test facility (LSTF) on a cold leg smallbreak loss-of-coolant accident with an accident management (AM) measure in a pressurized water reactor. Concerning the AM measure, the rate of steam generator (SG) secondary-side depressurization was controlled to achieve a primary depressurization rate of 200 K/h as a common test condition; however, the onset timings of the SG depressurization were different from each other. In both tests, rapid recovery started in the core collapsed liquid level after loop seal clearing, which caused whole core quench. Some discrepancies appeared between the LSTF and PKL test results for the core collapsed liquid level, the cladding surface temperature, and the primary pressure. The RELAP5/MOD3.3 code predicted the overall trends of the major thermal-hydraulic responses observed in the LSTF test well, and indicated a remaining problem in the prediction of primary coolant distribution. Results of uncertainty analysis for the LSTF test clarified the influences of the combination of multiple uncertain parameters on peak cladding temperature within the defined uncertain ranges.

IMPROVEMENT OF A SEMI-IMPLICIT TWO-PHASE FLOW SOLVER ON UNSTRUCTURED MESHES (비정렬 격자계에서의 물-기체 2상 유동해석코드 수치 기법 개선)

  • Lee, H.D.;Jeong, J.J.;Cho, H.K.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.380-388
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation of condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new numerical scheme to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the cupid code.

  • PDF

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.125-130
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principle design parameters, a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

  • PDF

Uncertainty analysis of ROSA/LSTF test by RELAP5 code and PKL counterpart test concerning PWR hot leg break LOCAs

  • Takeda, Takeshi;Ohtsu, Iwao
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.829-841
    • /
    • 2018
  • An experiment was conducted for the OECD/NEA ROSA-2 Project using the large-scale test facility (LSTF), which simulated a 17% hot leg intermediate-break loss-of-coolant accident in a pressurized water reactor (PWR). In the LSTF test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing, and water remaining occurred on the upper core plate in the upper plenum. Results of the uncertainty analysis with RELAP5/MOD3.3 code clarified the influences of the combination of multiple uncertain parameters on peak cladding temperature within the defined uncertain ranges. For studying the scaling problems to extrapolate thermal-hydraulic phenomena observed in scaled-down facilities, an experiment was performed for the OECD/NEA PKL-3 Project with the Primarkreislaufe Versuchsanlage (PKL), as a counterpart to a previous LSTF test. The LSTF test simulated a PWR 1% hot leg small-break loss-of-coolant accident with steam generator secondary-side depressurization as an accident management measure and nitrogen gas inflow. Some discrepancies appeared between the LSTF and PKL test results for the primary pressure, the core collapsed liquid level, and the cladding surface temperature probably due to effects of differences between the LSTF and the PKL in configuration, geometry, and volumetric size.

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

  • Park, Hyun-Sik;Choi, Ki-Yong;Choi, Seok;Yi, Sung-Jae;Park, Choon-Kyung;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.53-62
    • /
    • 2009
  • A set of experiments has been conducted on the performance sensitivity of the passive residual heat removal system (PRHRS) for an advanced integral type reactor, SMART, by using a high temperature and high pressure thermal-hydraulic test facility, the VISTA facility. In this paper the effects of the opening delay of the PRHRS bypass valves and the closing delay of the secondary system isolation valves, and the initial water level and the initial pressure of the compensating tank (CT) are investigated. During the reference test a stable flow occurs in a natural circulation loop that is composed of a steam generator secondary side, a secondary system, and a PRHRS; this is ascertained by a repetition test. When the PRHRS bypass valves are operated 10 seconds later than the secondary system isolation valves, the primary system is not properly cooled. When the secondary system isolation valves are operated 10 or 30 seconds later than the PRHRS bypass valves, the primary system is effectively cooled but the inventory of the PRHRS CT is drained earlier. As the initial water level of the CT is lowered to 16% of the full water level, the water is quickly drained and then nitrogen gas is introduced into the PRHRS, resulting in the deterioration of the PRHRS performance. When the initial pressure of the PRHRS is at 0.1MPa, the natural circulation is not performed properly. When the initial pressures of the PRHRS are 2.5 or 3.5 MPa, they show better performance than did the reference test.

A Study on Earth Pressure Properties of Granulated Blast Furnace Slag Used as Back-fill Material (뒷채움재로 이용한 고로 수쇄슬래그의 토압특성에 관한 실험적 연구)

  • Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.119-127
    • /
    • 2006
  • Granulated Blast Furnace Slag (GBFS) is produced in the manufacture process of pig-iron and shows a similar particle formation to that of natural sea sand and also shows light weight, high shear strength, well permeability, and especially has a latent hydraulic property by which GBFS is solidified with time. Therefore, when GBFS is used as a backfill material of quay or retaining walls, the increase of shear strength induced by the hardening is presumed to reduce the earth pressure and consequently the construction cost of harbor structures decreases. In this study, using the model sand box (50 cm$\times$50 cm$\times$100 cm), the model wall tests were carried out on GBFS and Toyoura standard sand, in which the resultant earth pressure, a wall friction and the earth pressure distribution at the movable wall surface were measured. In the tests, the relative density was set as Dr=25, 55 and 70% and the wall was rotated at the bottom to the active earth pressure side and followed by the passive side. The maximum horizontal displacement at the top of the wall was set as ${\pm}2mm$. By these model test results, it is clarified that the resultant earth pressure obtained by using GBFS is smaller than that of Toyoura sand, especially in the active-earth pressure.

Experimental study on the mechanical property of coal and its application

  • Jiang, Ting T.;Zhang, Jian H.;Huang, Gang;Song, Shao X.;Wu, Hao
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Brazilian splitting tests, uniaxial compression tests and triaxial compression tests are carried out on the coal samples cored from Shanxi group $II_1$ coal seam of Jiaozuo coal mine, Henan province, China, to obtain their property parameters. Considering the bedding has notable effect on the property parameter of coal, the samples with different bedding angles are prepared. The effects of bedding on the anisotropic characteristics of the coal seam are investigated. A geological geomechanical model is built based on the geology characteristics of the Jiaozuo coal mine target reservoir to study the effects of bedding on the fracture propagations during hydraulic fracturing. The effects of injection pressure, well completion method, in-situ stress difference coefficient, and fracturing fluid displacement on the fracture propagations are investigated. Results show bedding has notable effects on the property parameters of coal, which is the key factor affecting the anisotropy of coal. The hydraulic cracks trends to bifurcate and swerve at the bedding due to its low strength. Induced fractures are produced easily at the locations around the bedding. The bedding is beneficial to form a complicated fracture network. Experimental and numerical simulations can help to understand the effects of bedding on hydraulic fracturing in coalbed methane reservoirs.