• 제목/요약/키워드: Hydraulic Power System

검색결과 811건 처리시간 0.041초

자동차 동력조향용 유압호스의 압력맥동 감쇠특성 (Attenuation Characteristics of Fluid-Borne Pressure Ripple in Automotive Power Steering Hydraulic Hoses)

  • 김도태
    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.22-28
    • /
    • 1998
  • This paper presents experimental investigations on the attenuation characteristics of pressure ripple in automotive power steering hydraulic hoses. Also, a mathematical model of hydraulic hoses is proposed to support design of the power steering hydraulic circuit and analyze the attenuation characteristics of pressure ripples. The experimental results show that the pulsation attenuation characteristics of hydraulic hoses is remarkably affected by the flexible metal tube inserted coaxially inside a hydraulic hose with a finite length as well as viscoelastic properties of hose wall. It is also shown that the predicted results by the model proposed here agree well with the measured results over a wied range of frequency.

  • PDF

유압관로에서 맥동유동 특성에 관한 연구 (The Characteristics of Pulsating Flow in a Hydraulic Pipe)

  • 모양우;유영태;김지화
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.653-665
    • /
    • 2001
  • The characteristics of the pulsating flow in a hydraulic pipe have been investigated. It is necessary to study the power control of the power transmission system in the landing gear system of aircraft and the design of robots. In this system, the power transmission pipeline is composed of a hydraulic system, and the operating flow is unsteady flow. The wave equation varying with frequency is analyzed in order to investigate the characteristics of unsteady flow in such a pipe. This wave equation involves the propagation coefficient in terns of frequency and viscosity. The theoretical result of this wave equation are compared with experimental result. Each wave equation, varying with the propagation coefficient, is analyzed theoretically. then, a sinusoidal wave generator is built in order to make better sinusoidal waves, and a rectifier is built to eliminate the noise from the hydraulic pump. The theoretical results of the wave equation in the flow of viscous fluid agree well with experimental results.

  • PDF

유압펌프용 가변속 SRM 구동시스템 설계 (Design of Variable Speed SRM Drive for Hydraulic Pump Application)

  • 이동희;김봉철;안영주;안진우
    • 전력전자학회논문지
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 2006
  • 본 논문에서는 유압펌프 시스템의 효율적 구동을 위한 SRM 구동시스템이 제안된다. 유압 펌프 시스템이 요구하는 최대 사용 유압 및 사용유량으로부터 적정한 용량의 SRM을 설계 및 제작하고, 시험을 위해 SRM과 제어기를 포함한 전체 유압시스템을 구성한다. 제시한 SRM 구동시스템은 효율적 구동을 위해 속도제어 뿐만 아니라 유압계통의 압력검출로부터 압력제어도 같이 행하며, 이로부터 SRM이 적정한 운전영역에서 구동되도록 한다. 2.2[KW] 12/8극 SRM과 DSP를 사용한 제어기가 설계되고, 이 시스템을 실제 유압시스템에 적용하여 운전 특성을 확인하였다. 그 결과 제안한 시스템이 고효율과 빠른 응답특성을 가짐을 알 수 있다.

유압식 능동 현가시스템의 개발에 관한 연구 (A study on development of hydraulic active suspension system)

  • 장성욱;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1459-1464
    • /
    • 1996
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing consumption power. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic active suspension system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

  • PDF

유압식 능동 현가시스템의 설계 및 적용에 관한 연구 (A Study on the Application and Design of Hydraulic Active Suspension System)

  • 장성욱;이진걸
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.683-692
    • /
    • 2002
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing power consumption. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

Application of Flow Network Models of SINDA/FLUIN $T^{TM}$ to a Nuclear Power Plant System Thermal Hydraulic Code

  • Chung, Ji-Bum;Park, Jong-Woon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.641-646
    • /
    • 1998
  • In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUIN $T^{™}$ has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA).

  • PDF

Hydraulic Control System Using a Feedback Linearization Controller and Disturbance Observer - Sensitivity of System Parameters -

  • Kim, Tae-hyung;Lee, Ill-yeong;Jang, Ji-seong
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.59-65
    • /
    • 2019
  • Hydraulic systems have severe nonlinearity inherently compared to other systems like electric control systems. Hence, precise modeling and analysis of the hydraulic control systems are not easy. In this study, the control performance of a hydraulic control system with a feedback linearization compensator and a disturbance observer was analyzed through experiments and numerical simulations. This study mainly focuses on the quantitative investigation of sensitivity on system uncertainties in the hydraulic control system. First, the sensitivity on the system uncertainty of the hydraulic control system with a Feedback Linearization - State Feedback Controller (FL-SFC) was quantitatively analyzed. In addition, the efficacy of a disturbance observer coupled with the FL-SFC for the hydraulic control system was verified in terms of overcoming the control performances deterioration owing to system uncertainty.

유압식 굴삭기 효율 향상을 위한 HPM 시스템 개발 (Development of the HPM System to Improve Efficiency of the Hydraulic Excavator)

  • 권용철;이경섭;김성훈;구병국
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.1-8
    • /
    • 2019
  • The HPM (High-speed Power Matching) system is an electro-hydraulic control system. It directly controls the swash plate of the pump by selecting four-loop logic based on joystick signals, pump flow, and pressure signal to improve the efficiency and controllability of construction machines. In the NFC (Negative Flow Control) system, a typical pump control system using conventional open center type MCV, the loss is continuously generated by flow through the center bypass line even when the excavator is not in operation. Also, due to the slow response of the pump that indirectly controls the flow rate using the pressure regulator, peak pressure occurs at the start or stop of the operation. Conversely, the HPM system uses an MCV without center-by-pass flow path and the swash plate of a pump for the HPM is controlled by a high-speed proportional flow control valve. As a result, the HPM system minimizes energy loss in standby state of the excavator and enables peak pressure control through rapid electro-hydraulic control of a pump. In this paper, the concept of the HPM system algorithm is introduced and the hydraulic system efficiency is compared with the NFC system using the excavator SAT (System Analysis Tool).

발전설비 통풍기 날개각 제어작동기 신뢰성평가 모델 개발 (A development of reliability evaluation model for power plant fan pitch blade control actuator)

  • 손태하;허준영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3259-3263
    • /
    • 2007
  • This paper describes the proceedings of creating countermeasures after analysis and maintenance be able to conduct operation safely in a power plant. in order to operate the power plant in a stable and reliable way, the best condition of the govemor system can be maintained through the response characteristic analysis of the control device for the pitch blade control hydraulic actuator. The fan pitch blade control hydraulic actuator of a 500MW large-scale boiler is frequently operated under normal operation conditions. Common problems or malfunctions of the pitch blade control hydraulic actuators leads to the decline of boiler thermal efficiency and unexpected power plant trip. The inlet and outlet gas can be controlled by using the fan pitch blade control hydraulic actuator in order to regulate the internal pressure of the furnace and control the frequency in the power plant facility which utilizes soft coals as a power source.

  • PDF

동력 절약형 유압유니트 제안 및 제어기 설계 (A Proposal of a Power Saving Hydraulic Unit and Controller Design)

  • 염만오;이상윤
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.80-88
    • /
    • 2010
  • In a conventional system, hydraulic unit pumps out pressurized oil when the power use is not even necessary. As a result, it causes much power loss. This study is on the proposal of new hydraulic unit which controls the revolution of the pump in order to produce proper power needed and to have good response characteristic. In addition, the existing control methods such as PID control method, fuzzy control method, and adaptive control method are applied to the proposed hydraulic unit. Then the best control method is selected and the controller is developed to realize minimum power loss.