• Title/Summary/Keyword: Hydraulic Piston Pump/Motor

Search Result 24, Processing Time 0.018 seconds

Development of a Simulator of Vehicle Equipped with Hydrostatic Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System (유압 축압기식 제동에너지 회생시스템을 장착한 정유압구동식 차량의 모의시험기 개발)

  • 이성래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.119-126
    • /
    • 2003
  • The simulator of a vehicle equipped with hydrostatic transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston, pump plate angle and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

피스톤 형상이 유압 피스톤 펌프에 미치는 영향

  • 박태조;이정오
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1994.06a
    • /
    • pp.42-48
    • /
    • 1994
  • 고압하에서 고속으로 작동하는 유압 피스톤 펌프(hydraulic piston pump) 또는 모터(motor) 등의 유압기계(hydrostatic machine)에서 피스톤과 실린더 사이의 간극(clearance)을 흐르는 유압유(hydraulic oil)의 유동에 관한 연구는 이러한 유압기계의 피스톤부 설계에서 특히 중요하다. 본 연구에서는 원통형 피스톤이 원통부와 테이퍼가 진 부분으로 나누어져 있는 복합(composite)형상의 피스톤에 대한 이론해석을 수행하여 피스톤의 형상이 유압 피스톤 펌프의 윤활성능에 미치는 영향을 조사하고자 한다.

  • PDF

A study on the accelerated life test model for life prediction of piston assemblies (피스톤 조립체의 수명예측을 위한 가속실험모델에 관한연구)

  • Lee, Yong-Bum;Kim, Hyoung-Eui;Song, Kyu-Joe;Kim, Tae-Suk
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.116-125
    • /
    • 2006
  • Piston assemblies, which are key components of hydraulic high pressure pumps & motors, are major failure products operating at high pressure and high speed, and the main failure mode is wearout of the shoe surface. To predict the actual life of piston assemblies. we require to find out the most sensitive parameters and establish related empirical formula. In this study, we analyzed the life of piston and shoe assemblies in accordance with variation of speed, pressure, and temperature to reduce the life test time, then analyzed the result of combined accelerated life test which is applied by high speed, speed pressure, and high temperature simultaneously, and finally developed combined accelerated life test model.

  • PDF

Development of a Simulator of Vehicle Equipped with Mechanical Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System (유압 축압기식 제동에너지 희생시스템을 장착한 기계식 변속기 차량의 모의시험기 개발)

  • 이성래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.180-186
    • /
    • 2004
  • The simulator of a vehicle equipped with mechanical transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the shift lever position, the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the shift lever position, the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.