• 제목/요약/키워드: Hydraulic Motor Speed Control

검색결과 74건 처리시간 0.023초

영구자석형 동기전동기의 고저/선회 제어용 드라이버 설계 모델링 (The Pitch/Turning Control Driver Design Modeling of Permanent Magnet Synchronous Motor)

  • 이천기;황정원;이정태;양빈;임동근;박승엽
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.219-225
    • /
    • 2014
  • The purpose of this paper is to control of the low-speed, high-precision PMSM 2-axes pitch/turning. In this paper, apply the PAM-PWM inverter for it. However, The PAM-PWM inverter, control algorithms and hardware is complex. But it is possible to improve the performance in the low-speed operation can reduce the effect of the PWM ripple and Dead Time of inverter by applying suitable DC-bus voltage control. The direct driver PMSM(Permanent Magnet Synchronous Motor) configured to vector control part, PAM control part and the other controller. The vector control part includes PI current, speed control, additional space vector modulation. PAM control part has to have PI voltage controller and P current controller for DC-bus voltage control. Besides, the motor position estimator, the speed estimator and the counter electromotive force and Dead Time Compensation are added. With this arrangement, PMSM was driven with a low pole pitch/turning by performing the current control to the current command or torque command is the paper. As a result, it was possible to minimize the disturbance component that appears in the drive in proportion to the DC voltage magnitude. The use of a hydraulic drive method for a two-axis bubble column is a typical tank. When using the PWM PAM inverter driver is in the turret can be driven by high-precision, low vibration, low noise compared to the hydraulic drive may contribute to the computerization of the turret.

BLDC 서보 모터 펌프를 이용하는 직동력(PBW) 구동시스템의 DSP 제어기 및 구동기 설계 (Design of a DSP Controller and Driver for the Power-by-wire(PBW) Driving System Using BLDC Servo Motor Pump)

  • 주재훈;심동석;최중경
    • 한국정보통신학회논문지
    • /
    • 제15권5호
    • /
    • pp.1207-1212
    • /
    • 2011
  • 본 논문은 BLDC 서보모터 펌프를 사용하는 PBW(power-by-wire) 시스템을 위한 DSP(Digital Signal Processor) 제어기에 대한 연구를 제시한다. PBW 유압 엑츄에이터는 BLDC 서보모터에 의해 구동되는 유압펌프와 유압 실린더 그리고 제어기로 구현된다. 이 PBW 시스템은 유압 실린더의 선형 추진 동작을 위해 서보 모터의 속도 제어를 필요로 한다. 본 논문에서는 벡터 제어 방법과 MIN-MAX PWM 기술을 활용하는 서보 제어기를 구현한다. 제어기로서, PWM 파형발생기, A/D변환기, SPI(직병렬인터페이스) 포트 그리고 많은 입/출력 포트 등을 가지고 있는 이유로 TMS320F2812 DSP가 채택되었다.

유압 서보 시스템의 속도 제어를 위한 적응제어기의 설계에 관한 연구 (An adaptive control algorithm for the speed control of hydraulic-servo system)

  • 윤지섭;조형석
    • 한국정밀공학회지
    • /
    • 제3권1호
    • /
    • pp.29-39
    • /
    • 1986
  • An adaptive controller which is robust to the unknown load disturbance is developed for electro-hydraulic speed control systems. Since the load disturbance degrades the performance of the controller such as a steady state error and rise time in the conventional control system, appropriate adjustment of the controller is necessary in order to obtain the desired performances. The adaptation mechanism was designed to tune the feedforward gain, based upon minimization of ITAE (integral of time-multiplied absolute error) performance. The unknown load distrubance was identified by using an analog computer from the relationship between the velocity of the hydraulic motor and the load pressure. To evaluate the performance of the controller a series of simulations and experiments were conducted for various load conditions. Both results show that the proposed adaptive controller shows abetter performance than the conventional controller in terms of the steady state error and rise time.

  • PDF

QFT를 이용한 전기유압 하이브리드 부하 시뮬레이터의 능동 힘제어 (Active Force Control of Electro-Hydraulic Hybrid Load Simulator using Quantitative Feedback Theory)

  • 윤주현;안경관;딩쾅청;조우근
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.45-53
    • /
    • 2009
  • Today, reduction of $CO_2$ exhaustion gas for global-warming prevention becomes important issues in all industrial fields. Hydraulic systems have been widely used in industrial applications due to high power density and so on. However hydraulic pump is always being operated by engine or electric motor in the conventional hydraulic system. Therefore most of the conventional hydraulic system is not efficient system. Recently, an electro-hydraulic hybrid system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. In the electro-hydraulic hybrid system, hydraulic pump is operated by electric motor only when hydraulic power is needed. Therefore the electro-hydraulic system can reduce the energy consumption drastically when compared to the conventional hydraulic systems. This paper presents a new kind of hydraulic load simulator which is composed of electro-hydraulic hybrid system. Disturbances in the real working condition make the control performance decrease or go bad. QFT controller is designed to eliminate or reduce the disturbance and improve the control performance of the electro-hydraulic load simulator. Experimental results show that the proposed controller is verified to apply for electro-hydraulic hybrid system with varied external disturbances.

사판식 피스톤 펌프 서보제어기구 설계 (The Design of Servo Control Mechanism for Swash Plate Type Axial Piston Pump)

  • 노종호;함영복;윤소남;최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.741-744
    • /
    • 2002
  • The closed circuit pump is applied to control rotating speed and direction of hydraulic motor in hydrostatic transmission. To development of this pump, first of all the servo control regulator has to be designed. Mechanical-hydraulic type servo control mechanism is excellent to be compared with electronic-hydraulic type servo control valve to reliability and economy. In this paper to development positive and negative variable displacement type servo regulator, the hydro-mechanical servo control mechanism is calculated and designed with force balance of pilot piston and position feedback of servo piston.

  • PDF

실험 데이터 기반의 PID 제어기를 적용한 유압펌프용 SRM의 압력제어 (The pressure control of SR Drive for Hydraulic Oil-pump with Data based PID Control)

  • 석승훈;김태형;이동희;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.160-162
    • /
    • 2008
  • This paper presents the practical pressure control of hydraulic oil-pump system using SR drive for industrial application. In order to get a high performance of pressure dynamics in actual application, a data based PID control scheme is proposed in this paper. The look-up table from pre-measured data produces an approximately proper current reference according to motor speed and oil-pressure. And, PID controller can compensate the pressure error. With the combination of two references, the proposed control scheme can get a fast dynamics and stable operation. Furthermore, the suitable current controller considering the nonlinear characteristics of SRM(Switched Reluctance Motor) and practical test method for data measuring are introduced. The proposed control scheme is verified by the experimental test.

  • PDF

가변 유압모터를 이용한 전동지게차 리프트회생 효율에 관한 연구 (A Study on the Regeneration Efficiency of the Electric Forklift Using the Variable Hydraulic Motor)

  • 박용수;어영소;윤진수;도 찌 끄엉;한성민;신정우;유충목;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권3호
    • /
    • pp.26-32
    • /
    • 2020
  • In modern society, the energy-saving problem of industrial vehicles is economically and environmentally critical. Energy savings using the potential energy of forklifts are one of the viable solutions to resolving this problem. The basic concept of this study is to operate the hydraulic motor and recharge the battery using the flow rate from the cylinder when loading heavy objects and lowering the fork. To save energy, the torque and rotational speed of the generator should be optimized according to the load and descent speed to increase efficiency. To this end, we propose a system that optimizes energy saving efficiency by controlling the swashplate angle of the variable hydraulic motor through the GA(Genetic-Algorithm). The results were verified by building and comparing fixed motor models and variable motor models using the AMEsim. The results of the study show that the proposed optimized swashplate angle increases the energy saving efficiency by approximately 6%-8%, depending on the working conditions.

유압식 어로 윈치 시뮬레이터의 동적 거동 특성 (Dynamic Characteristics of a Hydraulic Fishing Winch Simulator)

  • 이대재
    • 한국수산과학회지
    • /
    • 제37권4호
    • /
    • pp.330-336
    • /
    • 2004
  • To meet the increasing demand from various fishing fields for training of fishing equipment operators, a fishing winch simulator was designed to train maritime students in the correct and safe operation of hydraulic winches under various load conditions related to fishing operations. The aim of this study is to describe the basic dynamic characteristics of the newly developed hydraulic fishing winch simulator and particularly to analyze the mechanical responses produced on the winch operation controls. The winch simulator consists of two winch units, a computer control and data acquisition system, a control consol and other associated mechanisms. When one winch is in hauling mode, the other one will always be in loading mode. The revolution speed of the hauling winch was controlled by a proportional directional control valve, and the braking torque of the loading winch was controlled by a proportional pressure control valve. The simulation experiments indicated that the dynamic characteristics of the hauling winch followed the braking response characteristics of the loading winch. The tests also showed that the warp speed and tension linearly depend on the pressure differential across the motor of the loading winch controlled by operating the proportional pressure control valve during the hauling operation. The experience gained from various training courses showed that the fishing winch simulator was very realistic and it was valuable for training novice winch operators. The results of the winch simulation exercise were recorded and used to evaluate the training on the operation and handling of the winch system. From these test results, we concluded that the tension acting on the warp during hauling operations can successfully be simulated by controlling the pressure differential across the motor with step changes of the control input signal to the proportional pressure control valve of the loading winch.

Design and experiment with a plastic mulch wrapper using a hydraulic system

  • Park, Hyo Je;Lee, Sang Yoon;Park, Yong Hyun;Kim, Young Keun;Choi, Il Su;Nam, Young Jo;Kweon, Gi Young
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.43-58
    • /
    • 2020
  • Mulching plastic is used for the purpose of maintaining soil temperature, moisture, and weed and pest prevention in agriculture. Any remaining plastic after use may contaminate the soil and damage crop growth. To solve this problem, mulching plastic wrappers have been studied and developed, but the actual use rate is quite low due to their poor performance and frequent tearing of the plastic on the field. In this study, we developed a tractor attachable mulching plastic wrapper to minimize the tearing of the mulched plastic. The developed mulching plastic wrapper consists of hydraulic motors and pumps, valves, a microcontroller, and sensors. The collecting speed of the plastic mulch was calculated considering the tractor's travel speed and the radius of the collecting drum. A proportional controller was designed to control the rotating speed of the hydraulic motor as the plastic was wound around the collection drum and the radius increased. The performance of an indoor experiment was quite promising because the difference between the collecting speed predicted by the calculation and the actual collecting speed was 2.71 rpm. Based on a field verification test, the speed difference was max. 14.28 rpm; thus, the, proportional integral derivative (PID) controller needs to be considered to control the drum speed precisely. Another issue was found when the soil covered at the edge of the plastic was hardened or the road surface was uneven, the speed control was unstable, and the plastic was torn. In future research, vibrational plows will be equipped to break-up the harden soil for collecting the plastic smoothly.

Electro-Hydrostatic Actuator의 성능해석 (Performance Analysis of an Electro-Hydrostatic Actuator)

  • 김도현;김두만;홍예선
    • 한국항공우주학회지
    • /
    • 제35권4호
    • /
    • pp.316-322
    • /
    • 2007
  • 정유압 방식 EHA는 종래의 밸브 제어 방식 전기유압 구동장치와 전혀 다른 특성을 나타낸다. 본 논문에서는 EHA의 비선형 요소를 포함한 수학적 모델을 유도하고 실험적으로 검증하였다. 이 수학적 모델을 근거로 전기 모터로 구동되는 유압 펌프, 파이프 배관 그리고 유압 실린더로 구성되는 EHA의 시물레이션 모델을 개발하여 주요 설계 인자인 모터 토크의 피크치, 펌프의 관성 모멘트 등이 제어 성능에 미치는 영향을 분석하였다. 여기에서 실험 조건은 의도적으로 과도기에서 모터 토크가 포화되도록 선정하였다. 그 결과로서 최대 속도로 동작하는 EHA의 제어 정밀도를 개선하기 위한 설계 조건을 조사하였다.