• Title/Summary/Keyword: Hydraulic Model Turbine

Search Result 64, Processing Time 0.025 seconds

Steady and unsteady flow computation in an elbow draft tube with experimental validation

  • Vu, Thi C.;Devals, Christophe;Zhang, Ying;Nennemann, Bernd;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.85-96
    • /
    • 2011
  • Steady state computations are routinely used by design engineers to evaluate and compare losses in hydraulic components. In the case of the draft tube diffuser, however, experiments have shown that while a significant number of operating conditions can adequately be evaluated using steady state computations, a few operating conditions require unsteady simulations to accurately evaluate losses. This paper presents a study that assesses the predictive capacity of a combination of steady and unsteady RANS numerical computations to predict draft tube losses over the complete range of operation of a Francis turbine. For the prediction of the draft tube performance using k-${\varepsilon}$ turbulence model, a methodology has been proposed to average global performance indicators of steady flow computations such as the pressure recovery factor over an adequate number of periods to obtain correct results. The methodology will be validated using two distinct flow solvers, CFX and OpenFOAM, and through a systematic comparison with experimental results obtained on the FLINDT model draft tube.

Hydrodynamic Calculation of Two-stage Weis-Fogh Type Water Turbine (2단 직렬 Weis-Fogh형 수차의 유체역학적 특성계산)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.709-717
    • /
    • 2017
  • In this study, a model of two-stage Weis-Fogh type water turbine model is proposed, the hydrodynamic characteristics of this water turbine model are calculated by the advanced vortex method. The basic conditions and the motion of each wing are the same as that of the single-stage model previously proposed by the same author. The two wings (NACA0010 airfoils) and both channel walls are approximated by source and vortex panels, and free vortices are introduced from the body surfaces. The distance between the front wing axis and the rear wing axis, and the phase difference between the motion of the two wings, which is in phase and out of phase are set as the calculation parameters. For each case, the unsteady flow fields, pressure fields, force coefficients, and efficiency of the two wings are calculated, and the hydrodynamic characteristics of the proposed water turbine model are discussed.

Efficiency of Marine Hydropower Farms Consisting of MultipleVertical Axis Cross-Flow Turbines

  • Georgescu, Andrei-Mugur;Georgescu, Sanda-Carmen;Cosoiu, Costin Ioan;Alboiu, Nicolae
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.150-160
    • /
    • 2011
  • This study focuses on the Achard turbine, a vertical axis, cross-flow, marine current turbine module. Similar modules can be superposed to form towers. A marine or river hydropower farm consists of a cluster of barges, each gathering several parallel rows of towers, running in stabilized current. Two-dimensional numerical modelling is performed in a horizontal cross-section of all towers, using FLUENT and COMSOL Multiphysics. Numerical models validation with experimental results is performed through the velocity distribution, depicted by Acoustic Doppler Velocimetry, in the wake of the middle turbine within a farm model. As long as the numerical flow in the wake fits the experiments, the numerical results for the power coefficient (turbine efficiency) are trustworthy. The overall farm efficiency, with respect to the spatial arrangement of the towers, was depicted by 2D modelling of the unsteady flow inside the farm, using COMSOL Multiphysics. Rows of overlapping parallel towers ensure the increase of global efficiency of the farm.

Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP (수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석)

  • Han, Myung-Chul;Kim, Jung-Kwan;Kim, Kwang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

Performance Improvement of Cross-Flow type Small Hydro Turbine by Air Layer Effect (소수력발전용 횡류수차의 공기층효과에 의한 성능향상)

  • Choi, Young-Do;An, Young-Joon;Shin, Byeong-Rog;Lee, Dong-Yeup;Lee, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1070_1071
    • /
    • 2009
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow hydraulic turbine is proposed for small hydropower development in this study. The turbine‘s simple structure and high possibility of applying to the sites of relatively low effective head and large flow rate can be advantages for the introduction of the small hydropower development. The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. CFD analysis for the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss in the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  • PDF

Fabrication and Performance Demonstration of the 20kW Class Inverted-type Cross-flow Turbine Based on Computational Fluid Dynamics Analysis (전산유체역학 해석에 기반한 20kW급 도립형 횡류수차의 제작 및 성능 실증)

  • Ham, Sangwoo;Choi, Ji-Woong;Jeong, Changho;Kim, Taeyun;Choi, Sangin;Jin, Glenn Young;Lee, Jeong Wan;Ha, Hojin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.107-119
    • /
    • 2021
  • The cross-flow turbine is one of the most famous and widely used hydraulic power systems for a long time. The cross-flow turbine is especially popular in many countries and remote regions where off-grided because of its many benefits such as low cost, high efficiency at low head, simple structure, and easy maintenance. However, most modern turbines, including the cross-flow turbine, are unsuitable for the ultra-low head situation, known as less than 3m water head or zero head with over 0.5m/s flow velocity. In this study, we demonstrated a 20kW class inverted-type cross-flow turbine's performance. First, we reevaluated our previous studies and introduced how to design the inverted-type cross-flow turbine. Secondly, we fabricated the 20kW class inverted-type cross-flow turbine for the performance test. And then, we designed a testbed and installed the turbine system in the demonstration facility. In the end, we compare the demonstration with its previous CFD results. The comparing result shows that both CFD and real model fitted on guide vane angle at 10 degrees. At the demonstration, we achieved 42% turbine efficiency at runner speed 125 RPM.

Development of 500kW Tidal Current Energy Converter and Uldolmok Field Test (500kW 조류력 발전장치 개발 및 울돌목 실증시험)

  • Sim, Wooseung;Choe, Ickhung;Lee, Kyuchan;Kim, Haiwook;Bae, Jonggug;Min, Kehsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • Hyundai Heavy Industries has developed a tidal current energy converter utilizing the accumulated technology as the world largest constructor for ship and offshore structures. The model has two sets of turbines in both ends in order to utilize the bi-directional current flows in flood and ebb tide. The torque produced by turbine in tidal current is directly delivered to generator along the horizontal axis, in which the turbine, gear, generator, gear and turbine are connected successively. The manufactured model for field test has the turbine diameter of 5 meters to produce the maximum power of 500kW at maximum current speed of 5m/s. The technical verification of tidal power converter was performed by means of small scale model test in towing tank as well as field test at the Strait of Uldolmok located in Jindo of Jeollanamdo province. Field test was performed by mounting the tidal current converter on the SEP(Self Elevating Platform) which could lower the 4 vertical legs on the seabed and could elevate platform over the water surface using the hydraulic power for itself. The field test performed for a month shows that power output is similar or larger compared with the expected one in design stage. This paper presents the development of tidal current energy converter and real sea field test by Hyundai Heavy Industries. This project has finished successfully and provided the technical advance toward commercial services for tidal current power generation in the south-west region in Korea.

  • PDF

Nonlinear Wave Forces on an Offshore Wind Turbine Foundation in Shallow Waters

  • Choi, Sung-Jin;Lee, Kwang-Ho;Hong, Keyyoung;Shin, Seong-Ho;Gudmestad, O.T.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • In this study, a 3D numerical model was used to predict nonlinear wave forces on a cylindrical pile installed in a shallow water region. The model was based on solving the viscous and incompressible Navier-Stokes equations for a two-phase flow (water and air) model and the volume of fluid method for treating the free surface of water. A new application was developed based on the cut-cell method to allow easy installation of complicated obstacles (e.g., bottom geometry and cylindrical pile) in a computational domain. Free-surface elevation, water particle velocities, and inline wave forces were calculated, and the results show good agreement with experimental data obtained by the Danish Hydraulic Institute. The simulation results revealed that the proposed model can, without the use of empirical formulas (i.e., Morison equation) and additional wave analysis models, reliably predict non-linear wave forces on an offshore wind turbine foundation installed in a shallow water region.

Cavitation Surge in a Small Model Test Facility simulating a Hydraulic Power Plant

  • Yonezawa, Koichi;Konishi, Daisuke;Miyagawa, Kazuyoshi;Avellan, Francois;Doerfler, Peter;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.152-160
    • /
    • 2012
  • Model tests and CFD were carried out to find out the cause of cavitation surge in hydraulic power plants. In experiments the cavitation surge was observed at flow rate, both with and without a surge tank placed just upstream of the inlet volute. The surge frequency at smaller flow rate was much smaller than the swirl mode frequency caused by the whirl of vortex rope. An unsteady CFD was carried out with two boundary conditions: (1) the flow rate is fixed to be constant at the volute inlet, (2) the total pressure is kept constant at the volute inlet, corresponding to the experiments without/with the surge tank. The surge was observed with both boundary conditions at both higher and lower flow rates. Discussions as to the cause of the surge are made based on additional tests with an orifice at the diffuser exit, and with the diffuser replaced with a straight pipe.