• 제목/요약/키워드: Hydraulic Model Experiment

검색결과 314건 처리시간 0.028초

Hydraulic Model Experiment on Circulation in Sagami Bay, Japan (IV) -Time-Varying States of Flow Pattern and Water Exchange in Baroclinic Rotating Model-

  • Choo, Hyo-Sang;Takasige Sugimoto
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권1호
    • /
    • pp.57-73
    • /
    • 1999
  • Baroclinic hydraulic model experiments on the time-varying states of the flow pattern and water exchange in Sagami Bay were carried out based on quasi-steady state experiments on the flow pattern. For the model experiments, density changes as well as time changes in the volume transport of the upper layer were executed to investigate the flow response of the bay in the case of a sudden inflow of low density water and variable volume transport into the Sagami Bay. The results of the model experiments showed that when the volume transport was increased frontal eddies or frontal wave streamers from the Kuroshio Through Flow were transferred to the inner part of the bay along with cyclonic circulation in the bay. In addition, density boundary currents appeared and flowed along the eastern boundary of the bay. As the upper layer density decreased, frontal eddies, frontal streamers and coastal boundary density currents occurred and proceeded along the eastern boundary of the bay at a high speed.

  • PDF

토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발 (Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls)

  • 정하우;김성준
    • 한국농공학회지
    • /
    • 제35권3호
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF

Development of a special thermal-hydraulic component model for the core makeup tank

  • Kim, Min Gi;Wisudhaputra, Adnan;Lee, Jong-Hyuk;Kim, Kyungdoo;Park, Hyun-Sik;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1890-1901
    • /
    • 2022
  • We have assessed the applicability of the thermal-hydraulic system analysis code, SPACE, to a small modular reactor called SMART. For the assessment, the experimental data from a scale-down integral-test facility, SMART-ITL, were used. It was conformed that the SPACE code unrealistically calculates the safety injection flow rate through the CMT and SIT during a small-break loss-of-coolant experiment. This unrealistic behavior was due to the overprediction of interfacial heat transfer at the steam-water interface in a vertically stratified flow in the tanks. In this study, a special thermal-hydraulic component model has been developed to realistically calculate the interfacial heat transfer when a strong non-equilibrium two-phase flow is formed in the CMT or SIT. Additionally, we developed a special heat structure model, which analytically calculates the heat transfer from the hot steam to the cold tank wall. The combination of two models for the tank are called the special component model. We assessed it using the SMART-ITL passive safety injection system (PSIS) test data. The results showed that the special component model well predicts the transient behaviors of the CMT and SIT.

삼각형 래버린스 위어의 유량계수 산정 (Estimation of Discharge Coefficient for Triangle Shape Labyrinth Weir)

  • 송재우;이진은;임장혁
    • 한국방재학회 논문집
    • /
    • 제9권2호
    • /
    • pp.87-93
    • /
    • 2009
  • 래버린스 위어는 마루부의 형상이 직선이 아닌 위어로 월류 폭을 증가시켜 월류량을 증대시키는 수공구조물이다. 최근 강우량 증가에 의한 댐 여수로의 개선 및 관개시설 및 운하관련 수공구조물 등 래버린스 위어의 활용범위는 다양하고 이에 관한 연구가 필요한 실정이다. 본 연구의 목적은 수리모형실험을 통해 삼각형 래버린스 위어 형상에 따른 수리특성 및 유량특성을 분석하여, 삼각형 래버린스 위어의 유량계수식을 제시하는데 있다. 본 연구에서 제시된 유량계수식은 상관계수, 잔차의 합, 평균절대오차율을 분석한 결과 적용성이 있는 것으로 나타나 댐의 여수로 및 관개시설 등 수공구조물 설계에 적용이 가능할 것이다.

밭에서의 유효우량 산정모형 개발 (Modeling Effective Rainfall for Upland Crops)

  • 정하우;김성준
    • 한국농공학회지
    • /
    • 제35권1호
    • /
    • pp.29-39
    • /
    • 1993
  • A model for estimating daily effective rainfall of upland crops was developed. The infiltration process was described by Green-Ampt infiltration model developed by Chu(1978). The model considers delayed surface ponding and surface detention storage under a uniform soil profile. The Green-Ampt parameters, that is, average hydraulic conductivity and average capillary pressure head on a sandy loam soil were determined from field experiment using Air-entry permeameter developed by Bouwer(1966). The model was verified by comparing measured and simulated surface runoff. The ratios of effective rainfall to total rainfall for red pepper, soybean, sesame and Chinese cabbage were evaluated using Borg's root growth model( 1986) respectively. The followings are a summary of this study results; 1.In a sandy loam soil average hydraulic conductivity was 3.28cm/hr and average capillary pressure head was 3.00cm. 2.The root growth of upland crops could be expressed by Borg's root growth model successively. 3.The measured and simulated surface runoff was agreed well with each other. 4.As the rainfall amount was increased, the ratio of effective rainfall to total rainfall was decreased exponentially till a certain growing period.

  • PDF

Hydraulic Model Experiment on the Circulation in Sagami Bay, Japan (III) -The Time-Varying States of the Flow Pattern and Water Exchange in Barotropic Rotating Model-

  • Choo Hyo-Sang;Sugimoto Takasige
    • Fisheries and Aquatic Sciences
    • /
    • 제1권2호
    • /
    • pp.260-268
    • /
    • 1998
  • A flow pattern and water exchange in Sagami Bay is examined using a barotropic hydraulic model. In the model experiments, the volume transports of the Kuroshio Through Flow were changed with time. The results of the model experiments show that when the volume transport is increased with time, water mass and vorticity are transferred to the inner part of the bay by wakes from the western part of the bay. In the case of decrease, as the wakes are ceased, the inner cyclonic circulation water is discharged to the outside of the bay by its southward extension through the Oshima eastern channel. It is found that the water exchange by the short-term variation of volume transport in time is about 20% of all the bay water.

  • PDF

전기유압 속도제어 시스템의 귀환 선형화 제어 (Feedback linearization of the electro-hydraulic velocity control system)

  • 김영준;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1116-1121
    • /
    • 1991
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the Implementation of the digital state feedback controller is studied. The C.inf. nonlinear transformation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation Is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed method In this paper is easier to implement than other proposed methods and it is possible to control in real tine. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful.

  • PDF

Development of a one-dimensional system code for the analysis of downward air-water two-phase flow in large vertical pipes

  • Donkoan Hwang;Soon Ho Kang;Nakjun Choi;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.19-33
    • /
    • 2024
  • In nuclear thermal-hydraulic system codes, most correlations used for vertical pipes, under downward two-phase flow, have been developed considering small pipes or pool systems. This suggests that there could be uncertainties in applying the correlations to accident scenarios involving large vertical pipes owing to the difference in the characteristics of two-phase flows, or flow conditions, between large and small pipes. In this study, we modified the Multi-dimensional Analysis of Reactor Safety KINS Standard (MARS-KS) code using correlations, such as the drift-flux model and two-phase multiplier, developed in a plant-scale air-inflow experiment conducted for a pipe of diameter 600 mm under downward two-phase flow. The results were then analyzed and compared with those based on previous correlations developed for small pipes and pool conditions. The modified code indicated a good estimation performance in two plant-scale experiments with large pipes. For the siphon-breaking experiment, the maximum errors in water flow for modified and original codes were 2.2% and 30.3%, respectively. For the air-inflow accident experiment, the original code could not predict the trend of frictional pressure gradient in two-phase flow as / increased, while the modified MARS-KS code showed a good estimation performance of the gradient with maximum error of 3.5%.

최적화 기법에 의한 원통형 유체 엔진마운트의 설계변수 동정 및 최적화 (Optimizing and Identification of Design Parameters of a Cylindrical Hydraulic Engine Mount by an Optimization Method)

  • 안영공
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.66-73
    • /
    • 2017
  • In order to identify the design parameters of a hydraulic engine mount with a nonlinear characteristics, an experimental method has been used generally. The method takes a considerable time and expense because of preparing an experimental apparatus, conducting a test, and analyzing results. Therefore, this paper presents a simple method to identify the design parameters of a cylindrical hydraulic engine mount, and optimize the design parameters. The physical model and mathematical equations of the mount were derived, and values of the design parameters of the mount were identified by optimization method with minimizing difference between the analytical results with the equations and the experimental results. This method is more simpler than the conventional experiment method and identify successfully the design parameters. In addition, the technique can optimize the design parameters of the mount to improves the isolation performance of the mount.

보행 로봇을 위한 서보밸브 구동 유압 액추에이터의 특성 분석 (A Study of Hydraulic Actuator Based On Electro Servo Valve For A Walking Robot)

  • 조정산
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권2호
    • /
    • pp.26-33
    • /
    • 2016
  • This paper describes of a mathematical and real experimental analysis for a walking robot which uses servo valve driven hydraulic actuator. Recently, many researchers are developing a walking robot based on hydraulic systems for the difficult and dangerous missions such as walking in the rough terrain and carrying a heavy load. In order to design and control a walking robot, the characteristics of the hydraulic actuators in the joint through the view point of walking such as controllability and backdrivability must be analyzed. A general mathematical model was used for analysis and proceeds to position and pressure changes characteristic of the input and backdrivability experiment. The result shows the actuator is a velocity source, had a high impedance, the output stiffness is high in contact with the rigid external force. So stand above the controller and instruments that complement the design characteristics can be seen the need to apply a hydraulic actuator in walking robot.