• Title/Summary/Keyword: Hydraulic Forces

Search Result 196, Processing Time 0.025 seconds

A Study on Acting Forces on the Vane of Vane Pump used for Vehicles′ Hydraulic Power Steering (차량용 HPS 베인펌프의 베인의 작용력에 관한 연구)

  • 정석훈;오석형
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.163-167
    • /
    • 2004
  • Reducing friction torque of the oil hydraulic vane pump used as the power source of power steering system should consider friction torque including viscous and mechanical friction torque according to the changes of rpm and pressure. This paper analyzes the forces acting on the vane to reduce the friction torque of the vane of the hydraulic vane pump used for Hydraulic Power Steering(HPS) system, and futhermore, the forces according to the shapes of cam profiles are analyzed.

A Study on the Hydraulic Excitation Forces Using Transfer Function and Operational Measured Data for the Centrifugal Pump (전달함수와 진동응답 측정에 의한 원심펌프에서의 유체력 특성에 관한 연구)

  • Choi, Bok-Lok;Park, Jin-Moo;Kim, Kwang-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1931-1939
    • /
    • 2000
  • Operating excitation forces of the linear vibratory system are normally determined by direct measurement techniques using load cells, strain gauges, etc. But, hydraulic forces of the rotating turbomachinery such as centrifugal pumps are exerted on an impeller due to asymmety of the flow by the interaction between pump impeller and volute. So, investigations of wide range of hydraulic designs and geometric deviations are difficult by direct method. This paper presents a hybrid approach for fourier transformed operational excitation forces, which uses pseudo-inverse matrix of the transfer matrix for the system and the measured vibrational data with standard installed pump. The determination of the transfer function matrix is based on a linear rotor/stationary system and steady state harmonic response in finite element analysis. And, vibrational data is collected in both vertical and horizontal directions at inboard and outboard bearing housings. The results of the process may be enhanced by making acceleration measurements at many more locations than there are forces to be determined.

A scientific approach to estimate the safe depth of burial of submarine pipelines against wave forces for different marine soil conditions

  • Neelamani, S.;Al-Banaa, K.
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.9-34
    • /
    • 2013
  • Submarine pipelines encounter significant wave forces in shallow coastal waters due to the action of waves. In order to reduce such forces (also to protect the pipe against anchors and dropped objects) they are buried below the seabed. The wave force variation due to burial depends on the engineering characteristics of the sub soil like hydraulic conductivity and porosity, apart from the design environmental conditions. For a given wave condition, in certain type of soil, the wave force can reduce drastically with increased burial and in certain other type of soil, it may not. It is hence essential to understand how the wave forces vary in soils of different hydraulic conductivity. Based on physical model study, the wave forces on the buried pipeline model is assessed for a wide range of wave conditions, for different burial depths and for four types of cohesion-less soils, covering hydraulic conductivity in the range of 0.286 to 1.84 mm/s. It is found that for all the four soil types, the horizontal wave force reduces with increase in depth of burial, whereas the vertical force is high for half buried condition. Among the soils, well graded one is better for half buried case, since the least vertical force is experienced for this situation. It is found that uniformly graded and low hydraulic conductivity soil attracts the maximum vertical force for half buried case. A case study analysis is carried out and is reported. The results of this study are useful for submarine buried pipeline design.

Hydraulic Force and Impeller Evaluation of a Centrifugal Heart Pump

  • Timms, D.L;Tan, A.C.C;Pearcy, M-J;Mcneil, K;Galbraith, A
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.376-381
    • /
    • 2004
  • A rig was constructed to test the performance characteristics and compare the hydraulic forces exerted on a centrifugal type artificial heart impeller. A conventional shaft. seal and bearing system. while driven by a small electric motor. supported the impeller which was separated from the pump casing by a six degree of freedom force transducer (JR3 Ine). Radial (x. y) and axial (z) hydraulic forces were recorded and compared. At physiological operating conditions. the results indicate that the double entry/exit centrifugal pump encounters a smaller radial force and significantly reduced axial thrust. These experimental results are valuable in the design of a magnetic bearing system to suspend the impeller of a centrifugal artificial heart pump. This experimental technique may also be applied to evaluate the required capacity and predict the lifetime of contact bearings in marine pumps.

Experimental Study on Hydraulic Performance of Perforated Caisson Breakwater with Turning Wave Blocks (회파블록케이슨 방파제의 수리학적 성능에 관한 실험적 연구)

  • Kim, In-Chul;Park, Ki-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • Recently, a perforated caisson breakwater with turning wave blocks was developed to improve the water affinity and public safety of a rubble mound armored by TTP. In this study, hydraulic model tests were performed to examine the hydraulic performance of a non-porous caisson and new caisson breakwater with perforated blocks for attacking waves in a small fishery harbor near Busan. The model test results showed that the new caisson was more effective in dissipating the wave energy under normal wave conditions and in reducing the wave overtopping rates under design wave conditions than the non-porous caisson. It was found that the horizontal wave forces acting on the perforated caisson were slightly larger than those on the non-porous caisson because of the impulsive forces on the caisson with the turning wave blocks.

Hydraulic and structural considerations of dam's spillway - a case study of Karkheh Dam, Andimeshk, Iran

  • Faridmehr, Iman;Jokar, Mohammad Javadi;Yazdanipour, Mohammadreza;Kolahchi, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • Preserving reservoir safety has recognized to be important for the public where a vast majority of dams are located upstream of greatly populated cities and industrialized areas. Buckling, floatation and cavitation have caused failure in the spillway gates and conveyance features during past catastrophic events; showed their vulnerability and need for regular inspection along with reviewing design calculations to ensure the spillway meet current design standards. This paper investigates the hydraulic and structural consideration of dam's spillway by evaluating the data of Karkheh Dam's. Discharge capacity, flood routings and cavitation damage risk were main features for hydraulic considerations where hydrostatic and hydrodynamic forces and stability conditions were considered in structural considerations.

Dynamic Characteristics of the Double Volute Double Suction Centrifugal Pump Using Measured Vibration Data (진동응답 측정에 의한 이중 벌류트형 양흡입 원심펌프의 동적특성)

  • 최복록;박진무
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.500-507
    • /
    • 2000
  • Dynamic forces due to mechanical and hydraulic related causes are always exerted on operating turbomachinery such as centrifugal pumps. To ensure the safety and the reliability of the pump. the magnitudes of the vibration must be kept within an acceptable limit. The focus of this paper is on the identification of the vibration behavior and the quantitative analysis of the hydraulic excitation forces. As the structure becomes more complex finite element analysis is essential to accurately predict the vibration characteristics and the excitation forces, This paper presents an experimental and analytical technique to find and solve to vibration problems in double volute double suction centrifugal pump. Measured vibration data due to the dynamic forces are presented and individual causes are identified, finally excitation forces of the pump are inversely estimated at each frequency on operating conditions.

  • PDF

A spiral variable section capillary model for piping hydraulic gradient of soils causing water/mud inrush in tunnels

  • Lin, P.;Li, S.C.;Xu, Z.H.;Li, L.P.;Huang, X.;He, S.J.;Chen, Z.W.;Wang, J.
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.947-961
    • /
    • 2017
  • An innovative spiral variable-section capillary model is established for piping critical hydraulic gradient of cohesion-less soils causing water/mud inrush in tunnels. The relationship between the actual winding seepage channel and grain-size distribution, porosity, and permeability is established in the model. Soils are classified into coarse particles and fine particles according to the grain-size distribution. The piping critical hydraulic gradient is obtained by analyzing starting modes of fine particles and solving corresponding moment equilibrium equations. Gravities, drag forces, uplift forces and frictions are analyzed in moment equilibrium equations. The influence of drag force and uplift force on incipient motion is generally expounded based on the mechanical analysis. Two cases are studied with the innovative capillary model. The critical hydraulic gradient of each kind of sandy gravels with a bimodal grain-size-distribution is obtained in case one, and results have a good agreement with previous experimental observations. The relationships between the content of fine particles and the critical hydraulic gradient of seepage failure are analyzed in case two, and the changing tendency of the critical hydraulic gradient is accordant with results of experiments.

Damping Force Characteristics of ER Damper Considering Hysteresis (ER 댐퍼의 이력현상을 고려한 댐핑력 특성 고찰)

  • 홍성룡;송현정;한상수;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.489-494
    • /
    • 2002
  • This paper presents hydraulic model which can capture the hysteric damping force behavior of ER damper. A flow mode rue ER damper is manufactured, and its field-dependent damping forces are measured. Newly proposed hydraulic model which derived from physical hydro-mechanical parameters of ER damper are conventional Bingham model are investigated to represent the field-dependent damping force characteristics of ER damper. After principal parameters of two models are estimated from the measured damping forces data, the force vs velocity hysteresis cycles are then reconstructed. The results show that the proposed hydraulic model can capture the hysteresis behavior of ER damper accurately.

  • PDF

Numerical analysis of dynamic response of jacket structures subject to slamming forces by breaking waves

  • Woo, Chanjo;Chun, Insik;Navaratnam, Christy Ushanth;Shim, Jaeseol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.404-417
    • /
    • 2017
  • The present study numerically analyzed the dynamic behavior of 3D framed structures subject to impulsive slamming forces by violent breaking waves. The structures were modeled using multiple lumped masses for the vertical projections of each member, and the slamming forces from the breaking waves were concentrated on these lumped masses. A numerical algorithm was developed to properly incorporate the slamming forces into a dynamic analysis to numerically determine the structural responses. Then, the validity of the numerical analysis was verified using the results of an existing hydraulic experiment. The numerical and experimental results for various model structures were generally in good agreement. The uncertainties concerning the properties of the breaking waves used in the verification are also discussed here.