• 제목/요약/키워드: Hydraulic Force

검색결과 675건 처리시간 0.027초

형궤환 제어를 이용한 유압 굴삭기의 원격 조종 시스템 개발 (Design of a Teleoperation System for Hydraulic Excavator using Force Feedback Control)

  • 서상준;김동석;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3054-3056
    • /
    • 1999
  • There have been numerous risks for excavator operator in working space. To overcome these riske, many researchers have been studied automation of excavator system. In these studies, excavator system is introduced by many researchers based on master-slave force feedback system. In this paper, a remote manipulation excavator is introduced based on force feedback. The proposed remote manipulation excavator system can give a feeling that the operator maneuvers the object directly, resulting in improved reality and efficiency. To demonstrate its performance, experiments are carried out on a test bed which is built around a commercial Hyundai HX-60W hydraulic excavator.

  • PDF

대형 굴삭기용 주차 브레이크의 마찰 특성 분석 (Analysis of the Friction Characteristics of Parking Brake for Large Size Excavator)

  • 이용범;김광민
    • 동력기계공학회지
    • /
    • 제16권2호
    • /
    • pp.5-10
    • /
    • 2012
  • The parking brake is one of the essential units embedded in track driving motor for forward and backward motion of an excavator. It is composed of multi-friction discs. When the hydraulic motor stops, the multi-friction discs closely stick to the facing discs by acting of multi-spring forces. So, the friction forces generate the braking force by compressing the cylinder barrel of hydraulic motor. In this study, we combined the multi-friction discs to two kinds of spring which have different spring force, and the maximum torque measured at the rotational starting point of hydraulic motor through gradually increasing the rotational torque of load side hydraulic motor by use of 1 and 2 sheets of friction plates. And, under this experimental condition, the maximum coefficient of static friction and the characteristics of paper friction sheet were analyzed. The obtained experimental results will be applied to the design of parking brake system for producing large size excavator in the 85-ton weight class.

직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구 (The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator)

  • 이성래
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권1호
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

연결기용 완충기의 시뮬레이션 모델 비교 (Comparison of Simulation Models for Train Buffer Couplings)

  • 장현목;김남욱;박영일
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.107-114
    • /
    • 2010
  • Coupling systems for trains need more complicated buffer equipments than existing systems because the recent tendency of the regulations enforces trains to be safe for collisions even when the driving speed is higher than before. Using hydraulic buffer is an effective way to satisfy the requirement while it causes the increase of the cost for the coupling system. In this study, we introduce the methodology to build a simulation model for the hydraulic buffer, which could be installed into the coupling systems. In the simulation model of the hydraulic buffer, the reacting force is determined by both buffer stroke and speed whereas the elastic buffer model is designed by using only the buffer stroke in other studies. The simulation results with the advanced hydraulic buffer model shows that the simulating results can be close the real experimental results around 10%, and, if we considers friction forces, the simulation calculates the maximum force within 10% comparing to the experimental.

비선형 특성을 적용한 파워트레인 마운팅 시스템의 마운트 전달력 해석 (Analysis of Mount Reaction Forces for Powertrain Mounting Systems using Nonlinear Characteristics)

  • 김진훈;이수종;이우현;김정렬
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.23-28
    • /
    • 2008
  • The primary objective of this study is to truly understand reaction force be due to engine exciting force. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand reaction force was applied MSC.Nastran software. Analyzed frequency response analysis of powertrain mount system. First, engine exciting force was applied field function. Also nonlinear characteristics was applied field function : such as dynamic spring constant and loss factor. And nonlinear characteristics was applied CBUSH. Generally characteristics of rubber mount is constant frequency. But characteristics of hydraulic mount depend to frequency. Therefore nonlinear characteristics was applied. Powertrain mounting system be influenced by powertrain specification, mount position, mount angle and mount characteristics etc. In this study, we was analyzed effects of powertrain mounting system. And we was varied dynamics spring constant and loss factor of mounts.

  • PDF

핵연료 집합체에 대한 수력적 양력의 해석 (Analysis of Hydraulic Lift Force of a Fuel Assembly)

  • Sim, Yoon-Sub;Oh, Dong-Seok;Hong, Soung-Dug;Kwon, Hyuk-Sung
    • Nuclear Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.95-100
    • /
    • 1990
  • 유체 유동상의 인자로 구성된 핵연료집합체에 걸리는 수력적 양력의 정확한 표현식은 핵연료의 건전성 설계 및 해석에 중요한 인자이다. 그러나 현재까지 이 양력에 대한 이론적인 해석이 제대로 이루어지고 있지 않아 이 분야에 혼란이 빚어지고 있다. 본 논문에서는 핵연료 집합체에 걸리는 수력적 양력에 대한 정확한 표현식을 이론적인 고찰을 통하여 유도하였으며 또한 양력에 관련된 제반 힘 요소들 즉, 압력강하, 부력, 전단응력, 집합체하중, 상호간의 관계를 검토하였다. 유도된 정확한 이론식을 이용하여 양력에 관한 간이식 오차의 특성을 분석한 결과 오차는 4가지 항으로 구성됨과 총 오차의 크기는 노심 유량의 변화 방향에 따라 달라짐을 알 수 있었다. 정량적인 분석을 COBRAIV-I를 이용하여 수행한 결과 총 오차의 크기는 약 1% 정도임이 밝혀졌다.

  • PDF

The effects of geometrical buoy shape with nonlinear Froude-Krylov force on a heaving buoy point absorber

  • Kim, Sung-Jae;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.86-101
    • /
    • 2021
  • This study examined the effects of buoy shape and Nonlinear Froude-Krylov force (NFK) on a heaving-buoy-type Wave Energy Converter (WEC). Based on the Maclaurin expansion, the theoretical solutions of the NFK were derived for three different buoy shapes; hemispheric buoy, circular vertical cylinder, and truncated conical cylinder. A hydraulic power take-off system was adopted, and the latching control strategy was applied to maximize the extracted power from the WEC. The nonlinear effects of the Froude-Krylov force and restoring force on the heaving point absorber were investigated by comparing the heave Response Amplitude Operator (RAO) and time-averaged power extraction. The results showed that the conventional linear analyses were overestimated by up to 50% under the high amplitude wave condition. The latching control strategy was the most effective when peak wave period of regular or irregular wave was 0.4-0.45 times the heave natural period of the buoy.

소방대원들의 작업자세에 따른 족저압력 분석 (Analysis of Foot Pressure according to the Work Postures on Fire Fighters)

  • 손성민;노효련
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.88-94
    • /
    • 2013
  • The purpose of this study is to find out the difference of foot pressure according to the firefighter's work postures for providing the basic information to prevent Musculoskeletal disorders. This study was conducted by 9 male firefighters. Work postures were selected for rescuee handling, fire hose and hydraulic rescue equipment work postures. These were divided into 3 position, "High", "Middle" and the postures of taking out and letting down hydraulic rescue equipment were analyzed as starting point and end point respectively. Foot Pressure was used to analyze contact area, peak pressure, and maximum force in terms of work postures, and compared between fire hose and hydraulic rescue equipment work postures. The results of foot pressure are as follows. According to the results of rescuee handling work postures, one person handling posture showed wide contact area and foot pressure showed the highest at right foot. Accoridng to the (High), (Middle), (Low) postures of fire hose, the results didn't show the difference among the contact area, peak pressure and maximum force. As the results of hydraulic rescue equipment work postures, (Low) postures showed the highest in terms of the right foot of contact area, peak pressure and maximum force and (High) postures showed the highest in left foot. The increase of foot pressure lead to be inconvenience of low extremity and muscle fatigue for maintaining postural control cause pain. Thus, it is necessary to design insole-equipped working shoe for reduce the impulse and effect of foot during the rescuee handling work which standing out as foot pressure.

발사체용 지상고정장치 구동유압실린더의 운동특성에 관한 해석적 연구 (Analytical Study on Dynamic Characteristics of Hydraulic Cylinder Applied to the Vehicle Holding Device for Launch Vehicle)

  • 이재준;박상민;양성필;김대래
    • 한국추진공학회지
    • /
    • 제21권1호
    • /
    • pp.44-50
    • /
    • 2017
  • 지상고정장치는 발사체 엔진의 추력이 정상상태에 도달할 때까지 발사체를 발사대에 고정시켜주는 역할을 한다. 본 연구에서는 지상고정장치에 적용되는 구동 유압실린더의 형상 및 운동 특성에 대한 해석적 연구를 수행하였다. 유압 실린더의 수축 운동은 분리 동작에 가장 중요한 요소로서, 해석 결과 실린더의 slit 면적이 축소되고 초기 충전 압력이 증가될수록 수축 하중이 증가함을 확인하였다. 이를 통해 최적화된 slit 면적과 초기 충전압력을 결정하였다. Transient 해석을 통해 실린더가 수축 시 발생하는 하중, 변위, 내부 압력분포를 확인하였다. 해석 결과 실린더가 발생시키는 하중은 실린더에 작용하는 외력과 동일한 값을 발생시키는 것을 확인하였다. 또한 실린더가 운동하는 중에 실린더 내부의 압력분포는 일정한 것을 확인할 수 있었다.

전자유압제어식 리그형 CVT 개발과 최적운전 (Development and Optimal Operation of an Electro-Hydraulic Controlled Rig Type CVT)

  • 김광원;권혁빈;김현수;은탁;박찬일
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2181-2190
    • /
    • 1993
  • An electro-hydraulic controlled rig type CVT(Continuously Variable Transmission) system was developed and its performance tests were carried out for the optimal operation. A CVT map was suggested based on the speed ration-axial force-torque relationship which was derived from the metal belt CVT mechanics. Also, a real time control and operation software was developed for the electro-hydraulic CVT system. By using the software and the CVT map, the control system was designed for the CVT speed ratio control with various drive modes. The electro-hydraulic CVT system developed in this study showed that the optimal operation algorithm could be obtained for the best fuel economy or the maximum power mode.