• Title/Summary/Keyword: Hydraulic Fluid Leakage

Search Result 66, Processing Time 0.022 seconds

A Study on Lubrication Characteristic of Slipper Hydrostatic Bearing in Hydraulic Piston Pump (유압 피스톤 펌프의 슬리퍼 정압베어링에 관한 윤활특성 연구)

  • Jung, J.Y.;Cho, I.S.;Baek, I.H.;Song, K.K.;Oh, S.H.;Jung, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • The leakage generated from the clearance between the cylinder bore and the piston is one of the most serious problems in the hydraulic piston pump, and it even results in terrible decrease of the volume efficiency at a great velocity and high pressure. In this paper, the lubrication characteristic of the hydrostatic slipper bearing equipped in the hydraulic piston pump has been worked out by experimentation with three model bearings of different shape. Preparatory to this, not only the three models of piston-slipper were designed, but the corresponding experimental apparatus were also manufactured. As a result, it was verified that, according to the supply pressure, the hydrostatic bearing part of the slipper is severely affected by the pocket pressure, land pressure, oil film thickness, and leakage flow.

  • PDF

Life Analysis of High Pressure Hydraulic Hose Assemblies by Impulse Test (충격압력을 이용한 고압용 유압호스 조립체의 수명분석)

  • Lee Y.B.;Kim H.E.;Yoo Y.C.;Park J.H.;Ko J.M.;Kwak D.H.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • The failures such as leakage and burst stemmed from the repetitive motions of bending and stretching of the assembly of hydraulic hose in construction machines, agriculture machines, vehicles, and industrial heavy machines can induce big troubles. Therefore, the hydraulic hose itself eventually requires an estimation of life to operate the hydraulic system safely. In this research, we have qualitatively selected the efficient test items by the analysis of the life and potential failures of hydraulic hose. We have used more than seven of hydraulic hoses simultaneously for the research. We have applied impulse pressure and half omega flexing motions to the accelerated life testing Test results have been expressed by employing weibull plot.

  • PDF

on Contact Behaviour Characters of High pressure Wearing using Finite Element Analysis (고압용 웨어링의 접촉거동 특성에 대한 유한요소 해석)

  • 최동열;고영배;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.356-363
    • /
    • 2001
  • Piston seal is a device designed to prevent leakage in split connecctions or between relatively moving part. Contact force, critical pressure at which extrusion occurs, leakage rate, fluid film thickness and friction force have been analyzed for some design parameter such as clearance between cylinder wall piston, depth of rectangular groove and pressure of sealed hydraulic fluid. In this paper, we analyze displacement and stress of Wearing by finite element analysis to understand Contact Behaviour Characters.

  • PDF

Rotordynamic Instabilities Caused by the Fluid Force Moments on the Backshroud of a Francis Turbine Runner

  • Song, Bingwei;Horiguchi, Hironori;Ma, Zhenyue;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-79
    • /
    • 2010
  • Severe flexural vibration of the rotor shaft of a Francis turbine runner was experienced in the past. It was shown that the vibration was caused by the fluid forces and moments on the backshroud of the runner associated with the leakage flow through the back chamber. The aim of the present paper is to study the self-excited rotor vibration caused by the fluid force moments on the backshroud of a Francis turbine runner. The rotor vibration includes two fundamental motions, one is a whirling motion which only has a linear displacement and the other is a precession motion which only has an angular displacement. Accordingly, two types of fluid force moment are exerted on the rotor, the moment due to whirl and the moment due to precession. The main focus of the present paper is to clarify the contribution of each moment to the self-excited vibration of an overhung rotor. The runner was modeled by a disk and the whirl and the precession moments on the backshroud of the runner caused by the leakage flow were evaluated from the results of model tests conducted before. A lumped parameter model of a cantilevered rotor was used for the vibration analysis. By examining the frequency, the damping rate, the amplitude ratio of lateral and angular displacements for the cases with longer and shorter overhung rotor, it was found that the precession moment is more important for smaller overhung rotors and the whirl moment is more important for larger overhung rotors, although both types of moment due to the leakage flow can cause self-excited vibration of an overhung rotor.

Oil Leak Analysis using Simulation Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델을 활용한 누유량 분석)

  • Dae Kyung Noh;Dong Won Lee;Jae Yong Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.35-44
    • /
    • 2023
  • This study aimed to analyze the performance of hydraulic systems for dental chair when long working hours makes the temperature of hydraulic fluid rise. The study was carried out in the following manner. First, 'cylinder's clearance' was reflected in the three kinds of hydraulic circuits, which were developed through the preceding study, in order to analyze oil leak. Second, 12 cases of simulations comprised of the up and down of cylinders were carried out. Third, it was determined whether the cylinder velocity of dental chair surpasses 1cm/s required in the development even in the hydraulic fluid temperature of 60℃. In conclusion, this study used SimulationX to verify the performance stability at high temperatures using three types of hydraulic circuits designed to develop a Korean unit chair.

Lubrication Characteristics of Surface Textured Hydraulic Machine Components (표면조직 가공한 유압부품면에서의 윤활특성)

  • Lee, J.O.;Park, T.J.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2012
  • Friction reduction between sliding hydraulic machine components is required to improve efficiency and reliability of hydraulic machineries. It is recently reported that surface texturing on sliding bearing surfaces can reduce the friction force highly. In this paper, numerical analysis is carried out to investigate the effect of dimple numbers and inlet boundary pressures on the lubrication characteristics of a parallel sliding bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the pressure distribution, load capacity, dimensionless friction force and leakage with dimple number and their locations, and inlet pressures. The overall lubrication characteristics are highly affected by dimple numbers and boundary pressure. The numerical method adopted and results can be used in design of efficient hydraulic machine components.

Measurment of Fluid Film Thickness on The Valve Plate in Oil Hydraulic Axial Piston Pumps (Part II : Spherical Design Effects)

  • Kim Jong-Ki;Kim Hyoung-Eui;Lee Yong-Bum;Jung Jae-Youn;Oh Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.655-663
    • /
    • 2005
  • Tribological characteristics in the sliding parts of oil hydraulic piston pumps are very important in increasing overall efficiency. In this study, the fluid film between the valve plate and the cylinder block was measured by using a gap sensor and the mercury-cell slip ring unit under real working conditions. To investigate the effect of the valve shape, we designed three valve plates each having a different shape. One of the valve plates was without bearing pad, another valve plate had bearing pad and the last valve plate was a spherical valve plate. It was noted that these three valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rates and the shaft torque were also investigated in order to clarify the performance difference between these three types of valve plates. From the results of this study, we found that the spherical valve plate estimated good fluid film patterns and good performance more than the other valve plates in oil hydraulic axial piston pumps.

on Contact Behaviour Characters of ACGT Seal for High pressure using Finite Element Analysis (고압용 ACGT 시일의 접촉거동 특성에 대한 유한요소 해석)

  • 최동열;김성원;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.350-355
    • /
    • 2001
  • Minimum clearance between the piston seal groove of a piston and cylinder bore to ensure against extrusion of the piston seal and leakage of working fluids is an important design parameter for a seal designer in hydraulic cylinder application. Contact force, critical pressure at which extrusion occurs, leakage rate, fluid film thickness and friction force have been analyzed for some design parameter such as clearance between cylinder wall piston, depth of rectangular groove and pressure of sealed hydraulic fluid. In this paper, we analyze displacement and stress of ACGT seal by finite element analysis to understand Contact Behaviour Characters

  • PDF

Analysis of Lubrication and Dynamic Characteristics of a Cylinder Block for Hydraulic Pump (유압펌프용 실린더 블록의 윤활 및 동특성 해석)

  • 안성용;임윤철;홍예선
    • Tribology and Lubricants
    • /
    • v.20 no.4
    • /
    • pp.209-217
    • /
    • 2004
  • Lubrication characteristics between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump play an important role in volumetric efficiency and durability of pump. In this paper, a finite element method is presented for the computation of the pressure distribution between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump. Also, a Runge-Kutta method is applied to simulate the cylinder block dynamics of three-degrees of freedom motion. From the results of computation, we can draw two major conclusions. One is related to the fluid film characteristics between a cylinder block and a valve plate and the other is related to the average leakage that is determined by the pressure gradient and the clearance near the discharge port. The numerical results of cylinder block dynamics were compared with the experimental results using eddy-current type gap sensors those are fixed at a pump housing.

Measurement of Fluid Film Thickness on the Valve Plate in Oil Hydraulic Axial Piston rumps (I) - Bearing Pad Effects -

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes . the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad.