• 제목/요약/키워드: Hydraulic Conductivity

검색결과 710건 처리시간 0.027초

역해석기법을 이용한 불포화토 투수계수함수 산정에 관한 연구 (Evaluation of Hydraulic Conductivity Function in Unsaturated Soils using an Inverse Analysis)

  • 이준용;한진태
    • 한국농공학회논문집
    • /
    • 제55권4호
    • /
    • pp.1-11
    • /
    • 2013
  • Unsaturated hydraulic conductivity function is one of key parameters to solve the flow phenomena in problems of landslide. Prediction models for hydraulic conductivity function related to soil-water retention curve equations in many geotechnical applications have been still used instead of direct measurement of the hydraulic conductivity function since prediction models from soil-water retention curve equations are attractive for their fast and easy use and low cost. However, many researchers found that prediction models for the hydraulic conductivity function can not predict the hydraulic conductivity exactly in comparison with experimental outputs. This research introduced an inverse analysis to evaluate the hydraulic conductivity function corresponding to experimental output from the flow pump system. Optimisation process was carried out to obtain the hydraulic conductivity function. This research showed that the inverse analysis with flow pump system was suitable to assess the hydraulic conductivity in unsaturated soil, and the prediction models for the hydraulic conductivity were led to the significant discrepancy from actual experimental outputs.

수리전도도 적용 방식에 따른 지하수특성 분석 (Groundwater Characterization according to Hydraulic Conductivity Input Method)

  • 안승섭;박동일
    • 한국환경과학회지
    • /
    • 제24권7호
    • /
    • pp.939-946
    • /
    • 2015
  • Hydraulic conductivity is an important parameter in the analytical model of groundwater. This study analyzed the groundwater movement characteristics by estimating optimal parameters according to hydraulic conductivity input methods with the MODFLOW model which is widely used. It first estimated the optimal parameters by dividing hydraulic conductivity zones by attitude. Next, it estimated optimal parameters by geological characteristic. It analyzed the groundwater movement characteristics by applying the recharge quantity and amount of evapotranspiration of drought periods and flood years with the estimated parameters. As the result was analyzed that there are differences of observation water level values according to hydraulic conductivity input methods but there is no big differences of overall groundwater movement characteristics by hydraulic conductivity input method, the two methods have found to be applicability in analyses of groundwater. So, it is judged that studies on more exact application of hydraulic conductivity and the application methods are needed.

수두손실률, 투수계수 및 공극비의 상호관계를 통한 제체의 다짐상태 평가 (The Estimation of Compacted State on Sea Dike Embankment with the Interrelationships Between the Hydraulic Head Loss Rate, the Hydraulic Conductivity and the Void Ratio)

  • 임성훈
    • 한국농공학회논문집
    • /
    • 제57권1호
    • /
    • pp.11-23
    • /
    • 2015
  • In this study the laboratory test for hydraulic conductivity and the seepage analysis with finite element method on measurement section of sea dike embankment were performed for the purpose of estimating the relative density of embankment from the measured pore water pressures, and both results of the test and the analysis were coupled with the method of estimating seepage blocking state with the hydraulic head loss rate in sea dike embankment. The relationship of void ratio vs hydraulic head loss rate was obtained by setting hydraulic conductivity as common ordinate on the relationships between the void ratio and the hydraulic conductivity and between the hydraulic conductivity and the hydraulic head loss rate. The void ratio on the segment between measuring points was calculated from the coupled relationship of the void ratio vs the hydraulic conductivity. The allowable upper and lower limits of hydraulic head loss rate and those of void ratio on the safety were generated from the coupled relationship between the laboratory compaction test and the sedimentation test. Current hydraulic head loss rate and void ratio were evaluated in the allowable range between upper and lower limits.

Thermal Influence on Hydraulic Conductivity in Compacted Bentonite: Predictive Modeling Based on the Dry Density-Hydraulic Conductivity Relationship

  • Gi-Jun Lee;Seok Yoon;Won-Jin Cho
    • 방사성폐기물학회지
    • /
    • 제22권1호
    • /
    • pp.17-25
    • /
    • 2024
  • Hydraulic conductivity is a critical design parameter for buffers in high-level radioactive waste repositories. Most employed prediction models for hydraulic conductivity are limited to various types of bentonites, the main material of the buffer, and the associated temperature conditions. This study proposes the utilization of a novel integrated prediction model. The model is derived through theoretical and regression analyses and is applied to all types of compacted bentonites when the relationship between hydraulic conductivity and dry density for each compacted bentonite is known. The proposed model incorporates parameters such as permeability ratio, dynamic viscosity, and temperature coefficient to enable accurate prediction of hydraulic conductivity with temperature. Based on the results obtained, the values are in good agreement with the measured values for the selected bentonites, demonstrating the effectiveness of the proposed model. These results contribute to the analysis of the hydraulic behavior of the buffer with temperature during periods of high-level radioactive waste deposition.

단순회귀분석에 의한 배수성 아스팔트의 투수계수 산정모델 제안 (Proposal for the Estimation of the Hydraulic Conductivity of Porous Asphalt Concrete Pavement using Regression Analysis)

  • 장영선;김도완;문성호;장병관
    • 한국도로학회논문집
    • /
    • 제15권3호
    • /
    • pp.45-52
    • /
    • 2013
  • PURPOSES : This study is to construct the regression models of drainage asphalt concrete specimens and to provide the appropriate coefficients of hydraulic conductivity prediction models. METHODS: In terms of easy calculation of the hydraulic conductivity from porosity of asphalt concrete pavement, the estimation model of hydraulic conductivity was proposed using regression analysis. 10 specimens of drainage asphalt concrete pavement were made for measurement of the hydraulic conductivity. Hydraulic conductivity model proposed in this study was calculated by empirical model based on porosity and the grain size. In this study, it shows the compared results from permeability measured test and empirical equation, and the suitability of proposed model, using regression analysis. RESULTS: As the result of the regression analysis, the hydraulic conductivity calculated from the proposal model was similar to that resulted from permeability measured test. Also result of RMSE (Root Mean Square Error) analysis, a proposed regression model is resulted in more accurate model. CONCLUSIONS: The proposed model can be used in case of estimating the hydraulic conductivity at drainage asphalt concrete pavements in fields.

On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials

  • Ma, Changkun;Zhang, Chao;Chen, Qinglin;Pan, Zhenkai;Ma, Lei
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.159-170
    • /
    • 2021
  • Particle size of tailings in different areas of dams varies due to sedimentation and separation. Saturated hydraulic conductivity of high-stacked talings materials are seriously affected by void ratio and particle breakage. Conjoined consolidation permeability tests were carried out using a self-developed high-stress permeability and consolidation apparatus. The hydraulic conductivity decreases nonlinearly with the increase of consolidation pressure. The seepage pattern of coarse-particle tailings is channel flow, and the seepage pattern of fine-particle tailings is scattered flow. The change rate of hydraulic conductivity of tailings with different particle sizes under high consolidation pressure tends to be identical. A hydraulic conductivity hysteresis is found in coarse-particle tailings. The hydraulic conductivity hysteresis is more obvious when the water head is lower. A new hydraulic conductivity-void ratio equation was derived by introducing the concept of effective void ratio and breakage index. The equation integrated the hydraulic conductivity equation with different particle sizes over a wide range of consolidation pressures.

Hydraulic Conductivity of Bentonite-Sand Mixture for a Potential Backfill Material for a High-level Radioactive Waste Repository

  • Cho, Won-Jin;Lee, Jae-Owan;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.495-503
    • /
    • 2000
  • The hydraulic conductivities in the bentonite-sand mixtures with high density were measured, and the effects of sand content and dry density on the hydraulic conductivity were investigated. The hydraulic conductivities of the bentonite-sand mixtures with a dry density of 1.6 Mg/㎥ and 1.8 Mg/㎥ are less than 10$^{-11}$ m/s when the sand content is not higher than 70 wt%. However at the sand content of 90 wt%, the hydraulic conductivity increases rapidly At the same dry density, the logarithm of hydraulic conductivity increases linearly with increasing sand content. The hydraulic conductivity of the bentonite-sand mixture can be explained by the concept of effective clay dry density, and using this concept, the hydraulic conductivities for the mixtures with various sand contents and dry densities can be estimated.

  • PDF

토양 칼럼의 경계흐름과 계면활성제가 수리전도도에 미치는 영향연구 (Effects of Column Boundary Flow and Surfactant Contents on Soil Hydraulic Conductivity)

  • 정승우;주병규
    • 유기물자원화
    • /
    • 제17권1호
    • /
    • pp.73-79
    • /
    • 2009
  • 수리전도도는 다공성매체 시스템의 중요한 특성인자이다. 수리전도도를 측정하는 방법은 실외측정방법과 실내측정방법이 있다. 수리전도도의 실내측정은 일반적으로 투수측정기를 이용한다. 기존의 투수측정방식으로 산정한 수리전도도는 경계흐름의 영향을 고려하지 않고 모든 유체가 수직으로 이동한다는 가정으로 결정되었다. 하지만 실제 토양에서 유체는 수직, 좌우 방향으로 이동할 수 있다. 본 연구에서는 경계흐름을 배제한 투수계를 이용하여 경계흐름이 수리전도도에 미치는 영향을 평가하였다. 실험결과 기존방식으로 산정한 수리전도도에 비해 경계흐름을 배제한 수리전도도가 약 1/3에 해당하였다. 투수측정기를 이용한 수리 전도도 측정에 있어 경계흐름에 대한 영향을 고려한 수리전도도 결정이 필요하다. 또한 토양 입경과 계면활성제가 수리전도도에 미치는 영향을 파악하였다. 토양입경과 수리전도도는 비례하는 것으로 나타났으며 계면활성제는 수리전도도를 감소시키는 것으로 확인되었다. 계면활성제 농도가 증가할수록 수리전도도는 보다 많이 감소하였다. 수리전도도를 결정하는 물리적 특성을 평가한 결과 유체의 점도가 가장 큰 영향을 미치는 것으로 나타났다.

Correlating the hydraulic conductivities of GCLs with some properties of bentonites

  • Oren, A. Hakan;Aksoy, Yeliz Yukselen;Onal, Okan;Demirkiran, Havva
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1091-1100
    • /
    • 2018
  • In this study, the relationships between hydraulic conductivity of GCLs and physico-chemical properties of bentonites were assessed. In addition to four factory manufactured GCLs, six artificially prepared GCLs (AP-GCLs) were tested. AP-GCLs were prepared in the laboratory without bonding or stitching. A total of 20 hydraulic conductivity tests were conducted using flexible wall permeameters ten of which were permeated with distilled deionized water (DIW) and the rest were permeated with tap water (TW). The hydraulic conductivity of GCLs and AP-GCLs were between $5.2{\times}10^{-10}cm/s$ and $3.0{\times}10^{-9}cm/s$. The hydraulic conductivities of all GCLs to DIW were very similar to that of GCLs to TW. Then, simple regression analyses were conducted between hydraulic conductivity and physicochemical properties of bentonite. The best correlation coefficient was achieved when hydraulic conductivity was related with clay content (R=0.85). Liquid limit and plasticity index were other independent variables that have good correlation coefficients with hydraulic conductivity (R~0.80). The correlation coefficient with swell index is less than other parameters, but still fairly good (R~0.70). In contrast, hydraulic conductivity had poor correlation coefficients with specific surface area (SSA), smectite content and cation exchange capacity (CEC) (i.e., R < 0.5). Furthermore, some post-test properties of bentonite such as final height and final water content were correlated with the hydraulic conductivity as well. The hydraulic conductivity of GCLs had fairly good correlation coefficients with either final height or final water content. However, those of AP-GCLs had poor correlations with these variables on account of fiber free characteristics.

Long-Term Hydraulic Conductivity and Cation Exchange of a Geosynthetic Clay Liner (GCL) Permeated with Inorganic Salt Solutions

  • Jo, Ho Young;Benson, Craig H.;Edil, Tuncer B.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.59-62
    • /
    • 2004
  • Hydraulic conductivity tests were conducted on a geosynthetic clay liner (GCL) for more than 2.5 yr using inorganic salt solutions to evaluate how the long-term hydraulic conductivity is affected by cation concentration and valence. Only small changes (i.e., $\leq$ 2X) in hydraulic conductivity (K) occurred during the test duration when the permeant solution was deionized (DI) water or 100 mM KCl and NaCl solutions. For weak CaCl$_2$ solutions ($\leq$ 20 mM), the hydraulic conductivities initially (< 0.2 yr) were comparable to the hydraulic conductivity obtained with DI water, but gradually increased by a factor of 2 to 13 over a period of nearly 2 yr. In contrast, the GCL permeated with strong CaCl$_2$ solutions ($\geq$ 50 mM) reached equilibrium nearly immediately, with a hydraulic conductivity approximately 2 orders of magnitude higher than the hydraulic conductivity to DI water.

  • PDF