• 제목/요약/키워드: Hydraulic

검색결과 8,345건 처리시간 0.036초

Hydraulic System Design and Vehicle Dynamic Modeling for the Development of a Tire Roller

  • Kim, Sang-Gyum;Kim, Jung-Ha;Lee, Woon-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.484-494
    • /
    • 2003
  • In this paper, we describe a hydraulic system design and vehicle dynamic modeling for development of tire roller traction, an essential aspect in the system analysis of tire rollers. Generally, tire rollers are one of the most useful types of machines employed in road construction, technically applied to many construction fields. We also conceptualize a new hydraulic and driving system as well as define the motion equations for dynamic and hydraulic analysis. First, we design the hydraulic circuit of the steering control and driving machine system, which can be employed to advance the performance of the lateral control, creating a prototype of construction equipment. Second, we formulate the hydraulic steering system model and hydraulic driving system model through tire roller system development technology. Finally, we validate the acquired performance results in actual tire roller equipment using the data acquisition system. These results may perhaps facilitate the establishment of priorities and design strategies for incremental introduction of tire roller technology into the vehicle and construction field.

Long-Term Hydraulic Conductivity and Cation Exchange of a Geosynthetic Clay Liner (GCL) Permeated with Inorganic Salt Solutions

  • Jo, Ho Young;Benson, Craig H.;Edil, Tuncer B.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.59-62
    • /
    • 2004
  • Hydraulic conductivity tests were conducted on a geosynthetic clay liner (GCL) for more than 2.5 yr using inorganic salt solutions to evaluate how the long-term hydraulic conductivity is affected by cation concentration and valence. Only small changes (i.e., $\leq$ 2X) in hydraulic conductivity (K) occurred during the test duration when the permeant solution was deionized (DI) water or 100 mM KCl and NaCl solutions. For weak CaCl$_2$ solutions ($\leq$ 20 mM), the hydraulic conductivities initially (< 0.2 yr) were comparable to the hydraulic conductivity obtained with DI water, but gradually increased by a factor of 2 to 13 over a period of nearly 2 yr. In contrast, the GCL permeated with strong CaCl$_2$ solutions ($\geq$ 50 mM) reached equilibrium nearly immediately, with a hydraulic conductivity approximately 2 orders of magnitude higher than the hydraulic conductivity to DI water.

  • PDF

지하수 모델을 이용한 제주도 지하수 유동특성 및 수리전도도 분석 (Analysis of Groundwater Flow Characterstics and Hydraulic Conductivity in Jeju Island Using Groundwater Model)

  • 김민철;양성기
    • 한국환경과학회지
    • /
    • 제28권12호
    • /
    • pp.1157-1169
    • /
    • 2019
  • We used numerical models to reliably analyze the groundwater flow and hydraulic conductivity on Jeju Island. To increase reliability, improvements were made to model application factors such as hydraulic watershed classification, groundwater recharge calculation by precipitation, hydraulic conduction calculation using the pilot point method, and expansion of the observed groundwater level. Analysis of groundwater flow showed that the model-calculated water level was similar to the observed value. However, the Seogwi and West Jeju watersheds showed large differences in groundwater level. These areas need to be analyzed by segmenting the distribution of the hydraulic conductivity. Analyzing the groundwater flow in a sub watershed showed that groundwater flow was similar to values from equipotential lines; therefore, the reliability of the analysis results could be improved. Estimation of hydraulic conductivity distribution according to the results of the groundwater flow simulation for all areas of Jeju Island showed hydraulic conductivity > 100 m/d in the coastal area and 1 - 45 m/d in the upstream area. Notably, hydraulic conductivity was 500 m/d or above in the lowlands of the eastern area, and it was relatively high in some northern and southern areas. Such characteristics were found to be related to distribution of the equipotential lines and type of groundwater occurrence.

유압식 구동장치의 서보밸브 오프셋 보정 방법에 관한 실험적 연구 (An Experimental Research of Servo Valve Offset Correction Method of Hydraulic Actuator)

  • 반준혁
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.72-79
    • /
    • 2019
  • Despite the development of electronic components and microprocessors, hydraulic actuators are still being applied in various applications. In some applications, there is a desire to apply a hydraulic actuator with a relatively small position error to the system. Various studies have been conducted to reduce the position error of hydraulic actuators. In this paper, the position error of the hydraulic actuator when the hydraulic oil pressure is supplied is defined as the offset generated by the servo valve, and the method for correcting the servo valve offset has been studied. A method for compensating the servo valve offset was proposed and it was verified through experiments that the position error of the hydraulic actuator was reduced. We also compared the servo valve offset correction method and controller using the PID control and disturbance observer used to reduce the position error of the hydraulic actuator. No-load test and load test were performed to confirm the performance of the servo valve offset correction method. The results of the study were compared with those obtained by using the disturbance observer and PID control.

On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials

  • Ma, Changkun;Zhang, Chao;Chen, Qinglin;Pan, Zhenkai;Ma, Lei
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.159-170
    • /
    • 2021
  • Particle size of tailings in different areas of dams varies due to sedimentation and separation. Saturated hydraulic conductivity of high-stacked talings materials are seriously affected by void ratio and particle breakage. Conjoined consolidation permeability tests were carried out using a self-developed high-stress permeability and consolidation apparatus. The hydraulic conductivity decreases nonlinearly with the increase of consolidation pressure. The seepage pattern of coarse-particle tailings is channel flow, and the seepage pattern of fine-particle tailings is scattered flow. The change rate of hydraulic conductivity of tailings with different particle sizes under high consolidation pressure tends to be identical. A hydraulic conductivity hysteresis is found in coarse-particle tailings. The hydraulic conductivity hysteresis is more obvious when the water head is lower. A new hydraulic conductivity-void ratio equation was derived by introducing the concept of effective void ratio and breakage index. The equation integrated the hydraulic conductivity equation with different particle sizes over a wide range of consolidation pressures.

자연 수리자극을 이용한 소유역 규모 대수층 수리전도도 특성화: 지구통계 진화전략 역산해석 기법의 적용 가능성 시험 (Feasibility Test for Hydraulic Conductivity Characterization of Small Basin-Scale Aquifers Based on Geostatistical Evolution Strategy Using Naturally Imposed Hydraulic Stress)

  • 박은규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권4호
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, the applicability of the geostatistical evolution strategy as an inverse analysis method of estimating hydraulic properties of small-scale basin was tested. The geostatistical evolution strategy is a type of data assimilation method that can effectively estimate aquifer hydraulic conductivity by combining a global optimization model of the evolution strategy and a local optimization model of the ensemble Kalman filtering. In the applicability test, the geometry, hydraulic boundary conditions, and the distribution of groundwater monitoring wells of Hanlim-Eup were employed. On the other hand, a synthetic hydraulic conductivity distribution was generated and used as the reference property for ease of estimation quality assessment. In the estimations, two different cases were tested where, in Case I, both groundwater levels and hydraulic conductivity measurements were assumed to be available, and only the groundwater levels were available, in Case II. In both cases, the reference and estimated hydraulic conductivity fields were found to show reasonable similarity, even though the prior information for estimation was not accurate. The ability to estimate hydraulic conductivity without accurate prior information suggests that this method can be used effectively to estimate mathematical properties in real-world cases, many of which little prior information is available for the aquifer conditions.

Influence of size and location of a pre-existing fracture on hydraulic fracture propagation path

  • Bo, Zhang;Yao, Li;Xue Y., Yang;Shu C., Li;Chao, Wei;Juan, Songa
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.321-333
    • /
    • 2023
  • Rock masses often contain natural fractures of varying sizes, and the size of the natural fractures may affect the propagation of hydraulic fractures. We conduct a series of triaxial hydraulic fracturing tests to investigate the effect of the pre-existing fracture size a on hydraulic fracture propagation. Experimental results show that the pre-existing fracture size impacts hydraulic fracture propagation. As the pre-existing fracture size increases, the hydraulic fracture propagates towards the pre-existing fracture tips, evidenced by the decreased distance between the final hydraulic fracture and the pre-existing fracture tips. Furthermore, the attracting effect of pre-existing fracture tips increases when the distance between the wellbore and the pre-existing fracture is short (L/D=2 or 4 in this study). With increased distance between the wellbore and the pre-existing fracture (L/D=6 in this study), the hydraulic fracture propagates to the middle of the pre-existing fracture rather than the tips, as the attracting effect of the pre-existing fracture diminishes.

평판형 수압파쇄 균열을 통과하는 다공질유동 특성에 관한 DNS 해석 연구 (DNS STUDY ON THE FLOW CHARACTERISTICS THROUGH SIMPLE POROUS HYDRAULIC FRACTURES)

  • 신창훈;박원규
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.19-27
    • /
    • 2016
  • The flow analyses through a porous hydraulic fractures is among the most important tasks in recently developed shale reservoirs but is rendered difficult by non-Darcy effects and geometric changes in the hydraulic fractures during production. In this study, several Computational Fluid Dynamics(CFD) models of hydraulic fractures, with a simple shape such as that of parallel plates, filled with proppants were built. Direct Numerical Simulation(DNS) analyses were then carried out to examine the flow loss characteristics of the fractures. The hydraulic diameters for the simulation models were calculated using the DNS results, and then they were compared with the results from Kozeny's definition of hydraulic diameter which is most widely used in the flow analysis field. Also, the characteristic parameters based on both hydraulic diameters were estimated for the investigation of the flow loss variation features. Consequently, it was checked in this study that the hydraulic diameter based on Kozeny's definition is not accordant to the results from the DNS analyses, and the case using the CFD results exhibits f Re robustness like general pipe flows, whereas the other case using Kozeny's definition doesn't. Ultimately, it is expected that discoveries reported in this study would help further porous flow analyses such as hydraulic fracture flows.

Hydraulic conductivity estimation by considering the existence of piles: A case study

  • Yuan, Yao;Xu, Ye-Shuang;Shen, Jack S.;Wang, Bruce Zhi-Feng
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.467-477
    • /
    • 2018
  • Estimation of hydraulic parameters is a critical step during design of foundation dewatering works. When many piles are installed in an aquifer, estimation of the hydraulic conductivity should consider the blocking of groundwater seepage by the piles. Based on field observations during a dewatering project in Shanghai, hydraulic conductivities are back-calculated using a numerical model considering the actual position of each pile. However, it is difficult to apply the aforementioned model directly in field due to requirement to input each pile geometry into the model. To develop a simple numerical model and find the optimal hydraulic conductivity, three scenarios are examined, in which the soil mass containing the piles is considered to be a uniform porous media. In these three scenarios, different sub-regions with different hydraulic conductivities, based on either automatic inverted calculation, or on effective medium theory (EMT), are established. The results indicate that the error, in the case which determines the hydraulic conductivity based on EMT, is less than that determined in the automatic inversion case. With the application of EMT, only the hydraulic conductivity of the soil outside the pit should be inverted. The soil inside the pit with its piles is divided into sub-regions with different hydraulic conductivities, and the hydraulic conductivity is calculated according to the volume ratio of the piles. Thus, the use of EMT in numerical modelling makes it easier to consider the effect of piles installed in an aquifer.

토양 칼럼의 경계흐름과 계면활성제가 수리전도도에 미치는 영향연구 (Effects of Column Boundary Flow and Surfactant Contents on Soil Hydraulic Conductivity)

  • 정승우;주병규
    • 유기물자원화
    • /
    • 제17권1호
    • /
    • pp.73-79
    • /
    • 2009
  • 수리전도도는 다공성매체 시스템의 중요한 특성인자이다. 수리전도도를 측정하는 방법은 실외측정방법과 실내측정방법이 있다. 수리전도도의 실내측정은 일반적으로 투수측정기를 이용한다. 기존의 투수측정방식으로 산정한 수리전도도는 경계흐름의 영향을 고려하지 않고 모든 유체가 수직으로 이동한다는 가정으로 결정되었다. 하지만 실제 토양에서 유체는 수직, 좌우 방향으로 이동할 수 있다. 본 연구에서는 경계흐름을 배제한 투수계를 이용하여 경계흐름이 수리전도도에 미치는 영향을 평가하였다. 실험결과 기존방식으로 산정한 수리전도도에 비해 경계흐름을 배제한 수리전도도가 약 1/3에 해당하였다. 투수측정기를 이용한 수리 전도도 측정에 있어 경계흐름에 대한 영향을 고려한 수리전도도 결정이 필요하다. 또한 토양 입경과 계면활성제가 수리전도도에 미치는 영향을 파악하였다. 토양입경과 수리전도도는 비례하는 것으로 나타났으며 계면활성제는 수리전도도를 감소시키는 것으로 확인되었다. 계면활성제 농도가 증가할수록 수리전도도는 보다 많이 감소하였다. 수리전도도를 결정하는 물리적 특성을 평가한 결과 유체의 점도가 가장 큰 영향을 미치는 것으로 나타났다.

  • PDF