• Title/Summary/Keyword: Hydration model

Search Result 208, Processing Time 0.021 seconds

Micromechanics based Models for Pore-Sructure Formation and Hydration Heat in Early-Age Concrete (초기재령 콘크리트의 세공구조 형성 및 발영특성에 관한 미시역학적 모델)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, as a performance based design concept is introduced, assurance of expected performances on serviceability and safety in the whole span of life is exactly requested. So, quantitative assessments about durability related properties of concrete in early-age long term are come to necessary, Especially in early age, deterioration which affects long-term durability performance can be occurred by hydration heat and shrinkage, so development of reasonable hydration heat model which can simulate early age behavior is necessary. The micor-pore structure formation property also affects shrinkage behavior in early age and carbonations and chloride ion penetration characteristic in long term, So, for the quantitative assessment on durability performance of concrete, modelings of early age concrete based on hydration process and micor-pore structure formation characteristics are important. In this paper, a micromechanics based hydration heat evolution model is adopted and a quantitative model which can simulate micro-pore structure development is also verified with experimental results. The models can be used effectively to simulate the early-age behavior of concrete composed of different mix proportions.

  • PDF

Numerical simulation on integrated curing-leaching process of slag-blended cement pastes

  • Xiang-Nan Li;Xiao-Bao Zuo;Yu-Xiao Zou;Guang-Pan Zhou
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.45-60
    • /
    • 2023
  • Concrete in water environment is easily subjected to the attack of leaching, which causes its mechanical reduction and durability deterioration, and the key to improving the leaching resistance of concrete is to increase the compaction of its microstructure formed by the curing. This paper performs a numerical investigation on the intrinsic relationship between microstructures formed by the hydration of cement and slag and leaching resistance of concrete in water environment. Firstly, a shrinking-core hydration model of blended cement and slag is presented, in which the interaction of hydration process of cement and slag is considered and the microstructure composition is characterized by the hydration products, solution composition and pore structure. Secondly, based on Fick's law and mass conservation law, a leaching model of hardened paste is proposed, in which the multi-species ionic diffusion equation and modified Gérard model are established, and the model is numerically solved by applying the finite difference method. Finally, two models are combined by microstructure composition to form an integrated curing-leaching model, and it is used to investigate the relationship between microstructure composition and leaching resistance of slag-blended cement pastes.

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.14 no.4
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.

Mathematical Modelling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 오병환;차수원;신경준;하재담;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.883-887
    • /
    • 1998
  • Hydration is the main reason for the growth of the material properties. A exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development all material properties should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The latter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration.

  • PDF

Hydration Model of Ettringite-Gypsum Type Expansive Additive (에트링가이트-석회 복합계 팽창재의 수화반응 모델화)

  • Park Sun Gyu;Noguchi Takahumi;Song Ha Won;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, some attention was particularly given to cracking sensitivity of high performance concrete. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age, and, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. Result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.

  • PDF

Thermo-mechanical behavior of prestressed concrete box girder at hydration age

  • Zhang, Gang;Zhu, Meichun;He, Shuanhai;Hou, Wei
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • Excessively elevated temperature can lead to cracks in prestressed concrete (PC) continuous bridge with box girder on the pier top at cement hydration age. This paper presents a case study for evaluating the behavior of PC box girder during the early hydration age using a two-stage computational model, in the form of computer program ANSYS, namely, 3-D temperature evaluation and determination of mechanical response in PC box girders. A numerical model considering time-dependent wind speed and ambient temperature in ANSYS for tracing the thermal and mechanical response of box girder is developed. The predicted results were compared to show good agreement with the measured data from the PC box girder of the Zhaoshi Bridge in China. Then, based on the validated numerical model three parameters were incorporated to analyze the evolution of the temperature and stress within box girder caused by cement hydration heat. The results of case study indicate that the wind speed can change the degradation history of temperature and stress and reduce peak value of them. The initial casting temperature of concrete is the most significant parameter which controls cracking of PC box girder on pier top at cement hydration age. Increasing the curing temperature is detrimental to prevent cracking.

Free Energy of Ion Hydration

  • Kim, Hag-Sung;Chung, Jong-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.220-225
    • /
    • 1993
  • The influence of temperature and pressure on the free energy of the ion hydration has been considered. The ion radii measured by conductometric method and the saturated dielectric constant cited from other works were used to calculate the free energy in the hydration shell. The Born equation was modified in order to fit in our model. In our model, the environment of ion consists of three regions. The innermost one is the hydration shell in which water is immobilized and electrostricted, the middle one is the one which contains less ordered waters than the bulk medium, and the outermost one is the bulk water which is under the influence of the electric field of ion. Our results for the free energy of ion hydration were compared with those of other attempts. Especially, ${\Delta}$G$_{hyd}$ of $Li^+$ ion is considerably too negative in this study at given temperature, comparing with those of other attempts. But ${\Delta}$G$_{hyd}$ of other ions coincides with each other.

Modeling of chloride diffusion in a hydrating concrete incorporating silica fume

  • Wang, Xiao-Yong;Park, Ki-Bong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.523-539
    • /
    • 2012
  • Silica fume has long been used as a mineral admixture to improve the durability and produce high strength and high performance concrete. And in marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. In this paper, we proposed a numerical procedure to predict the chloride diffusion in a hydrating silica fume blended concrete. This numerical procedure includes two parts: a hydration model and a chloride diffusion model. The hydration model starts with mix proportions of silica fume blended concrete and considers Portland cement hydration and silica fume reaction respectively. By using the hydration model, the evolution of properties of silica fume blended concrete is predicted as a function of curing age and these properties are adopted as input parameters for the chloride penetration model. Furthermore, based on the modeling of physicochemical processes of diffusion of chloride ion into concrete, the chloride distribution in silica fume blended concrete is evaluated. The prediction results agree well with experiment results of chloride ion concentrations in the hydrating concrete incorporating silica fume.

Theoretical Study of the Hydration of Collagen (Collagen의 수화에 대한 이론적 연구)

  • Lee Jong Myung;Jhon Mu Shik
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.403-411
    • /
    • 1978
  • A theoretical study of the hydration of the model compound of collagen, poly(Gly-Pro-Pro), has been carried out using empirical potential energy functions. The optimum locations and binding energies of water molecules bound to the model compound have been determined by minimizing the interaction energy. The stabilization energy due to the presence of water in the first hydration shell has been evaluated by comparing the internal interaction energies between the different groups of the model compound in its non-hydrated and hydrated states. The different energy components contributing to the overall stabilization are determined and discussed.

  • PDF

The Evaluation of Temperature History in Concrete by Using Cement Hydration Model (수화모델을 이용한 콘크리트의 초기온도 예측에 관한 연구)

  • Wang, Xiaoyong;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.253-254
    • /
    • 2012
  • In this study, it carried out measurement experiment Ca(OH)2 and chemically bound water to verify Ca(OH)2 and chemically bound water prediction model out of hydration model of cement incorporating blast furnace slag. It compared and analyzed prediction results using prediction model with measurement results of Ca(OH)2 quantity using thermogravimetric differential temperature analysis and chemically bound water quantity using electronic furnace. It agrees well experiments results with prediction results.

  • PDF