• Title/Summary/Keyword: Hybrid risk management model

Search Result 12, Processing Time 0.031 seconds

The Development of Hybrid Model and Empirical Study for the Several Inductive Approaches (여러 가지 Inductive 방법에 대한 통합모델 개발과 그 실증적 유효성에 대한 연구)

  • 김광용
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.185-207
    • /
    • 1998
  • This research investigates computer generated hybrid second-order model of two numerically based approaches to risk classification : discriminant analysis and neural networks. The hybrid second-order models are derived by rule induction using the ID3 and tested in the several different kinds of data. This new hybrid approach is designed to combine the high prediction accuracy and robustness of DA or NN with perspicuity of ID3. The hybrid model also eliminates the problem of contradictory inputs of ID3. After doing empirical test for the validity of hybrid model using small and medium companies' bankrupt data, hybrid model shows high perspicuity, high prediction accuracy for bankrupt, and simplicity for rules. The hybrid model also shows high performance regardless the type of data such as numeric data, non-numeric data, and combined data.

  • PDF

Identification and risk management related to construction projects

  • Boughaba, Amina;Bouabaz, Mohamed
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.445-465
    • /
    • 2020
  • This paper presents a study conducted with the aim of developing a model of tendering based on a technique of artificial intelligence by managing and controlling the factors of success or failure of construction projects through the evaluation of the process of invitation to tender. Aiming to solve this problem, analysis of the current environment based on SWOT (Strengths, Weaknesses, Opportunities, and Threats) is first carried out. Analysis was evaluated through a case study of the construction projects in Algeria, to bring about the internal and external factors which affect the process of invitation to tender related to the construction projects. This paper aims to develop a mean to identify threats-opportunities and strength-weaknesses related to the environment of various national construction projects, leading to the decision on whether to continue the project or not. Following a SWOT analysis, novel artificial intelligence models in forecasting the project status are proposed. The basic principal consists in interconnecting the different factors to model this phenomenon. An artificial neural network model is first proposed, followed by a model based on fuzzy logic. A third model resulting from the combination of the two previous ones is developed as a hybrid model. A simulation study is carried out to assess performance of the three models showing that the hybrid model is better suited in forecasting the construction project status than RNN (recurrent neural network) and FL (fuzzy logic) models.

A concept analysis of high-risk pregnant nursing: Using hybrid model (하이브리드 모형을 이용한 고위험 임부 간호의 개념 분석)

  • Chae, Miyoung;Kim, Hyunjin
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.423-433
    • /
    • 2021
  • The purpose of this study is to identify and clarify the concept of high-risk pregnant nursing. This study used Schwartz-Barcott & Kim's hybrid model to identify the main attributes and indicators. In the fieldwork stage, data were collected in Seoul. The participants were 10 nurses working in the who performed direct nursing care for high risk pregnant women in the high risk ward for more than 5 years. The concept of high-risk pregnant nursing was found to have 5 attributes and 37 indicators in 3 dimensions. The concept analysis high-risk pregnant nursing in this study could provide guidelines for high-risk pregnant nursing and lay a theoretical foundation.support' nursing practice and be useful for research in the women's health field..

A Study on Safety Policies for a Transition to a Hydrogen Economy (수소경제로의 이행을 위한 안전관리 정책 연구)

  • Jun, Daechun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Hydrogen, which can be produced from abundant and widely distributed renewable energy resources, seems to be a promising candidate for solving the concerns for improving energy security, urban air pollution, and reducing greenhouse gas emissions. The two primary motivating factors for hydrogen economy are fossil fuel supply limitations and concerns about global warming. But the safety issues associated with hydrogen economy need to be investigated and fully understood before being considered as a future energy source. Limited operating experience with hydrogen energy systems in consumer environments is recognised as a significant barrier to the implementation of hydrogen economy. To prevent unnecessary restrictions on emerging codes, standards and local regulations, safety policies based on real hazards should be developed. This article studies briefly the direct impact-distances from hazard events such as hydrogen release and jet fire, and damage levels from hydrogen gas explosion in a confined space. Based on the direct impact-distances indicated in the accident scenarios and consumer environments in Korea, the safety policies, which are related to hydrogen filling station, hydrogen fuel cell car, portable fuel cell, domestic fuel cells, and hydrogen town, are suggested to implement hydrogen economy. To apply the safety policies and overcome the disadvantages of prescriptive risk management, which is setting guidance in great detail to management well known risk but is not covering unidentified risk, hybrid risk management model is also proposed.

Two dimensional reduction technique of Support Vector Machines for Bankruptcy Prediction

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Lee, Ki-Chun
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.608-613
    • /
    • 2007
  • Prediction of corporate bankruptcies has long been an important topic and has been studied extensively in the finance and management literature because it is an essential basis for the risk management of financial institutions. Recently, support vector machines (SVMs) are becoming popular as a tool for bankruptcy prediction because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. In addition, they don't require huge training samples and have little possibility of overfitting. However. in order to Use SVM, a user should determine several factors such as the parameters ofa kernel function, appropriate feature subset, and proper instance subset by heuristics, which hinders accurate prediction results when using SVM In this study, we propose a novel hybrid SVM classifier with simultaneous optimization of feature subsets, instance subsets, and kernel parameters. This study introduces genetic algorithms (GAs) to optimize the feature selection, instance selection, and kernel parameters simultaneously. Our study applies the proposed model to the real-world case for bankruptcy prediction. Experimental results show that the prediction accuracy of conventional SVM may be improved significantly by using our model.

  • PDF

Satellite-based Hybrid Drought Assessment using Vegetation Drought Response Index in South Korea (VegDRI-SKorea) (식생가뭄반응지수 (VegDRI)를 활용한 위성영상 기반 가뭄 평가)

  • Nam, Won-Ho;Tadesse, Tsegaye;Wardlow, Brian D.;Jang, Min-Won;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • The development of drought index that provides detailed-spatial-resolution drought information is essential for improving drought planning and preparedness. The objective of this study was to develop the concept of using satellite-based hybrid drought index called the Vegetation Drought Response Index in South Korea (VegDRI-SKorea) that could improve spatial resolution for monitoring local and regional drought. The VegDRI-SKorea was developed using the Classification And Regression Trees (CART) algorithm based on remote sensing data such as Normalized Difference Vegetation Index (NDVI) from MODIS satellite images, climate drought indices such as Self Calibrating Palmer Drought Severity Index (SC-PDSI) and Standardized Precipitation Index (SPI), and the biophysical data such as land cover, eco region, and soil available water capacity. A case study has been done for the 2012 drought to evaluate the VegDRI-SKorea model for South Korea. The VegDRI-SKorea represented the drought areas from the end of May and to the severe drought at the end of June. Results show that the integration of satellite imageries and various associated data allows us to get improved both spatially and temporally drought information using a data mining technique and get better understanding of drought condition. In addition, VegDRI-SKorea is expected to contribute to monitor the current drought condition for evaluating local and regional drought risk assessment and assisting drought-related decision making.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Understanding the Mismatch between ERP and Organizational Information Needs and Its Responses: A Study based on Organizational Memory Theory (조직의 정보 니즈와 ERP 기능과의 불일치 및 그 대응책에 대한 이해: 조직 메모리 이론을 바탕으로)

  • Jeong, Seung-Ryul;Bae, Uk-Ho
    • Asia pacific journal of information systems
    • /
    • v.22 no.2
    • /
    • pp.21-38
    • /
    • 2012
  • Until recently, successful implementation of ERP systems has been a popular topic among ERP researchers, who have attempted to identify its various contributing factors. None of these efforts, however, explicitly recognize the need to identify disparities that can exist between organizational information requirements and ERP systems. Since ERP systems are in fact "packages" -that is, software programs developed by independent software vendors for sale to organizations that use them-they are designed to meet the general needs of numerous organizations, rather than the unique needs of a particular organization, as is the case with custom-developed software. By adopting standard packages, organizations can substantially reduce many of the potential implementation risks commonly associated with custom-developed software. However, it is also true that the nature of the package itself could be a risk factor as the features and functions of the ERP systems may not completely comply with a particular organization's informational requirements. In this study, based on the organizational memory mismatch perspective that was derived from organizational memory theory and cognitive dissonance theory, we define the nature of disparities, which we call "mismatches," and propose that the mismatch between organizational information requirements and ERP systems is one of the primary determinants in the successful implementation of ERP systems. Furthermore, we suggest that customization efforts as a coping strategy for mismatches can play a significant role in increasing the possibilities of success. In order to examine the contention we propose in this study, we employed a survey-based field study of ERP project team members, resulting in a total of 77 responses. The results of this study show that, as anticipated from the organizational memory mismatch perspective, the mismatch between organizational information requirements and ERP systems makes a significantly negative impact on the implementation success of ERP systems. This finding confirms our hypothesis that the more mismatch there is, the more difficult successful ERP implementation is, and thus requires more attention to be drawn to mismatch as a major failure source in ERP implementation. This study also found that as a coping strategy on mismatch, the effects of customization are significant. In other words, utilizing the appropriate customization method could lead to the implementation success of ERP systems. This is somewhat interesting because it runs counter to the argument of some literature and ERP vendors that minimized customization (or even the lack thereof) is required for successful ERP implementation. In many ERP projects, there is a tendency among ERP developers to adopt default ERP functions without any customization, adhering to the slogan of "the introduction of best practices." However, this study asserts that we cannot expect successful implementation if we don't attempt to customize ERP systems when mismatches exist. For a more detailed analysis, we identified three types of mismatches-Non-ERP, Non-Procedure, and Hybrid. Among these, only Non-ERP mismatches (a situation in which ERP systems cannot support the existing information needs that are currently fulfilled) were found to have a direct influence on the implementation of ERP systems. Neither Non-Procedure nor Hybrid mismatches were found to have significant impact in the ERP context. These findings provide meaningful insights since they could serve as the basis for discussing how the ERP implementation process should be defined and what activities should be included in the implementation process. They show that ERP developers may not want to include organizational (or business processes) changes in the implementation process, suggesting that doing so could lead to failed implementation. And in fact, this suggestion eventually turned out to be true when we found that the application of process customization led to higher possibilities of failure. From these discussions, we are convinced that Non-ERP is the only type of mismatch we need to focus on during the implementation process, implying that organizational changes must be made before, rather than during, the implementation process. Finally, this study found that among the various customization approaches, bolt-on development methods in particular seemed to have significantly positive effects. Interestingly again, this finding is not in the same line of thought as that of the vendors in the ERP industry. The vendors' recommendations are to apply as many best practices as possible, thereby resulting in the minimization of customization and utilization of bolt-on development methods. They particularly advise against changing the source code and rather recommend employing, when necessary, the method of programming additional software code using the computer language of the vendor. As previously stated, however, our study found active customization, especially bolt-on development methods, to have positive effects on ERP, and found source code changes in particular to have the most significant effects. Moreover, our study found programming additional software to be ineffective, suggesting there is much difference between ERP developers and vendors in viewpoints and strategies toward ERP customization. In summary, mismatches are inherent in the ERP implementation context and play an important role in determining its success. Considering the significance of mismatches, this study proposes a new model for successful ERP implementation, developed from the organizational memory mismatch perspective, and provides many insights by empirically confirming the model's usefulness.

  • PDF

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.