• Title/Summary/Keyword: Hybrid railroad propulsion system

Search Result 7, Processing Time 0.025 seconds

Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System (하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안)

  • Park, Seongyun;Kim, Jaeyoung;Kim, Jonghoon;Ryu, Joonhyoung;Cho, Inho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

Performance Evaluation for Application of Large Capacity LPB Pack Equipped to Series Hybrid Articulated Vehicle (직렬형 하이브리드 굴절차량용 대용량 LPB 팩의 적용 및 성능 평가)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.930-937
    • /
    • 2012
  • Newly developed Series hybrid low-floor articulated vehicle which can meet both road and railway running conditions. It has the rated driving speed of 80 km/h and three driving modes with hybrid(engine+battery) driving mode, engine driving mode, battery driving mode. The battery driving mode requires the several 10 km running without additional charging operation. The vehicle has been equipped with LPB (lithium polymer battery) pack for the series hybrid propulsion system. LPB pack consists of 168 cells (3.7 V in a cell, 80 Ah) in series, DC Circuit breaker, mechanical rack, BMS (battery management system). This paper has shown the design process of LPB pack and application to the vehicle. Driving results in the road was successful to be satisfied with the requirement of the series hybrid vehicle.

Characteristic Analysis of Superconducting LSM for the Wheel-rail-guided Very High Speed Train according to Winding Method of the Ground 3-phase Coils (휠-레일 방식 초고속열차용 초전도 선형동기전동기의 지상권선 방식별 특성 분석)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Chang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1164-1169
    • /
    • 2014
  • Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated by a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, the design and characteristic analysis of a coreless-type superconducting Linear Synchronous Motor (LSM) for 600km/h very high speed railway system are conducted in this paper. The designed coreless-type superconducting LSMs are the distributed winding model, the concentrated 1 layer winding model and the concentrated 2 layer winding model, respectively. In addition, the characteristic comparison studies on each LSM are conducted.

Driving System of Korea Bimodal Tram (Korea Bimodal Tram의 운행시스템)

  • Byun, Yeun-Sub;Yoon, Hee-Taek;Mok, Jei-Kyun;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1695-1696
    • /
    • 2008
  • KRRI (Korea Railroad Research Institute) is developing a bimodal tram since the 2003s. The vehicle will be used in the public transportation system. The bimodal tram has the advantages of both bus and train. Bus system has the advantages of flexibility of the routes delivering passengers to the destination and easy accessibility. Train is to meet the scheduled arrival and massive public transportations. The vehicle is the rubber tired tram and is all wheel steered single articulation. The propulsion system is configured by CNG hybrid system. The length of the vehicle is 18m. The vehicle lanes will be marked with permanent magnets that are buried in the road. The vehicle can be automatically operated by navigation control system (NCS). In this paper, we introduce the driving system of the bimodal tram which is developed by KRRI.

  • PDF

Development of a Series Hybrid Propulsion System for Bimodal Tram (바이모달 트램용 직렬형 하이브리드 추진시스템 개발)

  • Bae, Chang-Han;Lee, Kang-Won;Mok, Jai-Kyun;You, Doo-Young;Bae, Jong-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.494-502
    • /
    • 2011
  • Bimodal tram is designed to run on a dedicated path in automatic mode using a magnetic track system in order to realize a combination of the accessibility of a bus and the constant regularity of a railroad. This paper presents design and test results of the series hybrid propulsion system of the bimodal tram on both test track and public road, which uses CNG (Compressed Natural Gas) engine and Lithium polymer battery pack. This paper describes the real-time data measuring equipment for the series hybrid propulsion system of the bimodal tram. Using this measurement equipment, the performance of the prototype vehicle's driving on test track and public road was verified and the fuel consumption and the efficiency of CNG engine have been investigated.

Development and Application of LPB Management System for Bimodal Tram (바이모달트램용 LPB Management System 개발 및 적용)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.231-235
    • /
    • 2015
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

Inner Temperature Distribution by Two Appearances of Series-Cell Configured Battery Pack using Cylindrical Cells (원통형셀 기반 직렬배터리팩의 외형(정사/직사면체) 차이에 의한 내부 열분포 기초해석)

  • Han, Dong-Ho;Lee, Pyeng-Yeon;Park, Jin-Hyeng;Kim, Jonghoon;Yoo, Kisoo;Cho, In-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.408-414
    • /
    • 2018
  • Given that lithium-ion batteries are expected to be used as power sources for electric and hybrid vehicles, thermodynamics experimentation and prediction based on experimental data were performed. Thermal, electrochemical, and electrochemical/electrical-thermal models were used for accurate battery modeling. Various applications of different battery packs were demonstrated, and thermal analysis was performed using the same experimental conditions for square and rectangular battery packs. Accurate thermal analysis for a single cell should be prioritized to determine the thermal behavior of the battery pack. The energy balance equation, which contains heat generation and heat transfer factors, defines the thermal behavior of the battery pack. By comparing battery packs of different shapes tested under the same condition, this study revealed that the rectangular battery pack is superior to the square battery pack in terms of the maximum temperature of inner cells and temperature variation between cells.