• Title/Summary/Keyword: Hybrid process technology

Search Result 630, Processing Time 0.023 seconds

KF Post Deposition Treatment Process of Cu(In,Ga)Se2 Thin Film Effect of the Na Element Present in the Solar Cell Performance (KF 후열처리 공정시 CIGS 박막의 Na 원소 존재가 태양전지 셀성능에 미치는 영향)

  • Son, Yu-Seung;Kim, Won Mok;Park, Jong-Keuk;Jeong, Jeung-hyun
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.130-134
    • /
    • 2015
  • The high efficiency cell research processes through the KF post deposition treatment (PDT) of the $Cu(In,Ga)Se_2(CIGS)$ thin film has been very actively progress. In this study, it CIGS thin film deposition process when KF PDT 300 to the processing temperature, 350, $400^{\circ}C$ changed to soda-lime glass (SLG) efficiency of the CIGS thin film characteristics, and solar cell according to Na presence of diffusion from the substrate the effects were analyzed. As a result, the lower the temperature of KF PDT and serves to interrupt the flow of current K-CIGS layer is not removed from the reaction surface, FF and photocurrent is decreased significantly. Blocking of the Na diffusion from the glass substrate is significantly increased while the optical voltage, photocurrent and FF is a low temperature (300, $350^{\circ}C$) in the greatly reduced, and in $400^{\circ}C$ tend to reduce fine. It is the presence of Na in CIGS thin film by electron-induced degradation of the microstructure of CIGS thin film is expected to have a significant impact on increasing the hole recombination rate a reaction layer is formed of the K elements in the CIGS thin film surface.

Development of the Hybrid Laser Welding Carriage for Shipbuilding (조선 적용을 위한 하이브리드 레이저 용접 캐리지 개발)

  • Shin, J.H.;Lee, Y.S.;Ryu, S.H.;Sung, H.J.
    • Laser Solutions
    • /
    • v.11 no.3
    • /
    • pp.21-24
    • /
    • 2008
  • Hybrid laser welding technology is a good process to reduce a thermal distortion and increase the productivity. However, it requires a high investment and a massive modification of the fabrication line such as a gantry system, milling machine for the edge preparation, high power laser system and weld machine. Therefore the development of an economical laser welding system is a crucial point to apply this system in shipbuilding yard. In this study, a portable hybrid laser welding carriage was developed for I-butt joint without edge milling. It is expected that the carriage type system could reduce investment cost.

  • PDF

Comparison of Hybrid Hemming and Roller Hemming Using Finite Element Analysis (유한요소해석을 이용한 하이브리드 헤밍과 롤러 헤밍의 비교)

  • Jo, D.S.;Oh, M.H.;Kim, R.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.119-124
    • /
    • 2021
  • In this study, the hybrid and roller hemming processes of aluminum alloy sheets were compared using the finite element analysis. The aluminum alloy 6014-T4 sheet with a thickness of 1 mm was used for the hemming process. The mechanical properties of the aluminum sheet obtained through a uniaxial tensile test were used for the simulation. The finite element analysis of hybrid and roller hemming was performed using a commercial software (ABAQUS) by the use of the mechanical properties. The finite element simulation results showed that the hybrid hemming holds an advantage over the roller hemming in terms of the dimensional accuracy

Supersonic Nozzle Design for Laser-Assisted Oxygen Hybrid Cutting (레이저 산소 하이브리드 커팅을 위한 초음속 노즐 설계에 관한 연구)

  • Jeong, Gwang Ho;Kim, Seok;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.97-104
    • /
    • 2021
  • LASOX is a cutting technology used to dismantle nuclear power plants. The core component of the laser-assisted oxygen hybrid cutting process is the supersonic nozzle. To design optimized supersonic nozzles, an experimental design was established and computational fluid dynamics was used to analyze the supersonic nozzles. The main factors affecting the supersonic nozzle performance were identified using Minitab. Further, the correlations and interactions between the main factors of the supersonic nozzle design were analyzed. The fluid analysis results were examined for the major factors and standardized response variables as well as main effects to ensure suitability of the supersonic nozzle design for the laser-assisted oxygen cutting process.

Organic-inorganic Hybrid Materials for Spin Coating Hardmask (스핀코팅 하드마스크용 유-무기 하이브리드 소재에 관한 연구)

  • Yu, Je Jeong;Hwang, Seok-Ho;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • In this work, the primary material for a single layered hardmask which can afford a spin-on process was prepared by the minture of organic and inorganic sources. The preparation of hybrid polymer was attempted by esterification from silanol terminated siloxane compounds and acetonide-2,2-bis(methoxy)propionic acid. The optical, thermal and morphological properties of the test hardmask film was examined in terms of cross-linking agent and additives. In addition, the etch rate of hardmask film and photo resist layer were compared. The hybrid polymer prepared from organic and inorganic materials was found to be useful for hardmask film to form the nano-patterns.

Preparation of TiO2-SiO2 Organic-Inorganic Hybrid Coating Material by Sol-gel Method and Evaluation of Corrosion Characteristics (졸-겔법에 의한 유·무기 TiO2-SiO2 혼성(Hybrid)코팅재료의 제조 및 부식 특성 평가)

  • Noh, J.J.;Maeng, W.Y.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.64-75
    • /
    • 2015
  • Single $TiO_2$ coating prepared by sol-gel process usually experiences cracks in coating layer. In order to prevent cracks, an inorganic-organic hybrid $TiO_2-SiO_2$ coating was synthesized by combining precursors with an organic functional group. Five different coatings with various ratios of (1:8, 1:4, 1:1, 1:0.25 and 1:0.125) titanium alkoxide (TBOT, Tetrabutylorthotitanate) to organo-alkoxysilane (MAPTS, ${\gamma}$-Methacryloxy propyltrimethoxysilane) on carbon steel substrate were made by sol-gel dip coating. The prepared coatings were analyzed to study the coating properties (surface crack, thickness, composition) by scanning electron microscope (SEM), focused ion beam (FIB), and Fourier transform infrared spectroscopy (FT-IR). Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were also performed to evaluate the corrosion characteristics of the coatings. Crack free $TiO_2-SiO_2$ hybrid coatings were prepared with the optimization of the ratio of TBOT to MAPTS. The corrosion rates were significantly decreased in the coatings for the optimized precursor ratio without cracks.

Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites

  • Lim, Jae Il;Rhee, Kyong Yop;Kim, Hyun Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.125-128
    • /
    • 2014
  • In this study, the effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites was investigated. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. Fracture tests were conducted and the fracture surfaces of the carbon/basalt/epoxy hybrid composites were then examined using scanning electron microscopy (SEM). The results showed that the flexural strength and flexural modulus of the CSBC specimen respectively were ~32% and ~245% greater than those of the BSCC specimen. However, the interlaminar fracture toughness of the CSBC specimen was ~10% smaller than that of the BSCC specimen. SEM results on the fracture surface showed that matrix cracking is a dominant fracture mechanism for the CSBC specimen while interfacial debonding between fibers and epoxy resin is a dominant fracture process for the BSCC specimen.

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

Preparation and Characteristics of PVP/Silica Hybrid Film by Sol-Gel Process (졸-겔 공정에 의한 PVP/Silica 하이브리드 필름의 제조 및 특성)

  • Kim, Tae-Hyoung;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.233-240
    • /
    • 2001
  • The transparent organic-inorganic hybrid films were prepared by the Sol-Gel process. PVP(polyvinylpyrrolidone) was used in organic component and TEOS(tetraethoxysilane) was used in inorganic component. HCI, $CH_{3}COOH$, and $NH_{4}OH$ were used as the Sol-Gel catalyst. The characteristics according to not only the variation of organic and inorganic contents but also the variation of catalyst species and contents were investigated. On the whole, the compatibility was remained between organic and inorganic components, and also as the TEOS contents were increased, mostly the transparency and the mechanical, thermal properties were improved. In addition, as content of catalysts was increased, the films showed characteristics that were closer to PVP than silica. Although the transparency of films was preserved in HCI and $CH_{3}COOH$, only the film containing more than 40wt% TEOS in $NH_{4}OH$ showed different phenomena.

Process Design and Finite Element Analysis of Rectangular Cup used for Ni-MH Battery with High Aspect Ratio (니켈-수소 2차 전지용 고세장비의 직사각 컵에 대한 성형공정 설계 및 유한요소해석)

  • Ku, T.W.;Kim, H.Y.;Song, W.J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.170-181
    • /
    • 2008
  • The shape of rectangular cup used for Ni-MH(Nickel-coated Metal Hydrogen) battery for hybrid car looks quite simple, but the forming process of extruding and setting up process design are highly difficult. Furthermore, there are few concrete reports on the rectangular deep drawn cup as part of hybrid vehicles till now. In this study, process design for rectangular cup in the multi-stage deep drawing process is carried out, and FE analysis is also preformed based on the result of the process design. From the simulation result, some unexpected problems such as earing, wrinkling and excessive thickness changes of the intermediate blank occurred. To overcome these failures, a series of modification for punch shape in the forming process design are completed and applied. Considering the modified punch shape in the multi-stage deep drawing process, additional FE analysis is also carried out and the simulation result is verified in view of the deformed shape, thickness change and effective strain distribution. The result of FE analysis with the improved process design confirmed not only reducing thinning of wall and possibilities of failure but also improving the quality of drawing product through the modification of punch shape.