• Title/Summary/Keyword: Hybrid navigation

Search Result 203, Processing Time 0.025 seconds

Requirements for Cerebrovascular Surgery in Comprehensive Stroke Centers in South Korea

  • Kim, Tackeun;Oh, Chang Wan;Park, Hyeon Seon;Lee, Kunsei;Lee, Won Kyung;Lee, Heeyoung
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.4
    • /
    • pp.478-484
    • /
    • 2018
  • Objective : Cerebrovascular disease (CVD) was the third most common cause of death in South Korea in 2014. Evidence from abroad suggests that comprehensive stroke centers play an important role in improving the mortality rate of stroke. However, surgical treatment for CVD is currently slightly neglected by national policy, and there is still regional imbalance in this regard. For this reason, we conducted a survey on the necessity of, and the requirements for, establishing regional comprehensive cerebrovascular surgery centers (CCVSCs). Methods : This investigation was performed using the questionnaire survey method. The questionnaire was consisted with two sections. The first concerned the respondent's opinion regarding the current status of demand and the regional imbalance of cerebrovascular surgery in South Korea. The second section asked about the requirements for establishing regional CCVSCs. We sent the questionnaire to 100 board members of the Korean Society of Cerebrovascular Surgeons. Results : Most experts agreed that cerebrovascular surgery patients were concentrated in large hospitals in the capital area, and 83.6% of respondents agreed that it was necessary to alleviate the regional imbalance of cerebrovascular surgery. With regards to personnel, over 90% of respondents answered that at least two neuro-vascular surgeons and two neuro-interventionists are necessary to establish a CCVSC. Regarding facilities, almost all respondents stated that each CCVSC would require a neuro-intensive care unit and hybrid operating room. The survey asked the respondents about 13 specific neurovascular surgical procedures and whether they were necessary for a regional CCVSC. In the questions about the necessity of cerebrovascular surgical equipment, all seven pieces of equipment were considered essential by all respondents. A further five pieces of equipment were considered necessary on site: computed tomographic angiography, magnetic resonance angiography, conventional angiography, surgical microscope, and surgical navigation. Our results may provide a basis for future policy regarding treatment of cerebrovascular disease, including surgery. Conclusion : Raising the comprehensiveness of treatment at a regional level would lower the national disease burden. Policies should be drafted regarding comprehensive treatment including surgery for cerebrovascular disease, and related support plans should be implemented.

A Study on Energy Efficiency Improvement of LDC Recycling Load Tester (LDC 재생형 부하 시험기의 효율 개선에 관한 연구)

  • Lee, Choon-il;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.86-92
    • /
    • 2016
  • A high-capacity battery installed in a hybrid vehicle or electric vehicle is used to power, or as a power supply for, electric sub-assemblies. In order to use a high-capacity battery as a power supply for electric sub-assemblies, such as an electronic control unit or for lighting, radio, and navigation, there is a need for a DC converter that changes a high voltage of 240-400V to a low voltage of 12-14V, which is done with a low-voltage DC-DC converter (LDC). An LDC undergoes long-term aging so as to reduce latent defects in the production process. With regard to the usual aging method, an LDC is a DC-DC converter. So, a DC power supply is connected and used as input, and a programmable DC electronic load is the output. For stable operation, a product having a larger capacity by 10% (compared to an LDC) is used, and has a structure where electric power is dissipated into 100% heat. So, there is a problem with volume, based on the use of two pieces of equipment to test the LDC, and another problem based on the generation of heat in the programmable DC electronic load. Hence, this paper suggests a load test method as a way of recycling, where a significant portion of the electricity dissipated as heat in a load tester is returned as input. The method realizes savings of 80% or more in the electricity dissipated as heat through improvement in the efficiency of the recycling load tester.

Prediction of field failure rate using data mining in the Automotive semiconductor (데이터 마이닝 기법을 이용한 차량용 반도체의 불량률 예측 연구)

  • Yun, Gyungsik;Jung, Hee-Won;Park, Seungbum
    • Journal of Technology Innovation
    • /
    • v.26 no.3
    • /
    • pp.37-68
    • /
    • 2018
  • Since the 20th century, automobiles, which are the most common means of transportation, have been evolving as the use of electronic control devices and automotive semiconductors increases dramatically. Automotive semiconductors are a key component in automotive electronic control devices and are used to provide stability, efficiency of fuel use, and stability of operation to consumers. For example, automotive semiconductors include engines control, technologies for managing electric motors, transmission control units, hybrid vehicle control, start/stop systems, electronic motor control, automotive radar and LIDAR, smart head lamps, head-up displays, lane keeping systems. As such, semiconductors are being applied to almost all electronic control devices that make up an automobile, and they are creating more effects than simply combining mechanical devices. Since automotive semiconductors have a high data rate basically, a microprocessor unit is being used instead of a micro control unit. For example, semiconductors based on ARM processors are being used in telematics, audio/video multi-medias and navigation. Automotive semiconductors require characteristics such as high reliability, durability and long-term supply, considering the period of use of the automobile for more than 10 years. The reliability of automotive semiconductors is directly linked to the safety of automobiles. The semiconductor industry uses JEDEC and AEC standards to evaluate the reliability of automotive semiconductors. In addition, the life expectancy of the product is estimated at the early stage of development and at the early stage of mass production by using the reliability test method and results that are presented as standard in the automobile industry. However, there are limitations in predicting the failure rate caused by various parameters such as customer's various conditions of use and usage time. To overcome these limitations, much research has been done in academia and industry. Among them, researches using data mining techniques have been carried out in many semiconductor fields, but application and research on automotive semiconductors have not yet been studied. In this regard, this study investigates the relationship between data generated during semiconductor assembly and package test process by using data mining technique, and uses data mining technique suitable for predicting potential failure rate using customer bad data.