• Title/Summary/Keyword: Hybrid learning

Search Result 566, Processing Time 0.022 seconds

STEAM Program Development for Career Exploration using VR Webtoon - Application of Contact·Untact Combined Education (VR 웹툰을 활용한 진로탐색형 STEAM 프로그램 개발 - 대면·비대면 혼합형 교육 적용 사례)

  • Joo, Hak-Jong;Lim, Eun-Young;Seo, Kyung-Min
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.4
    • /
    • pp.653-664
    • /
    • 2021
  • This study proposes a STEAM (Science, Technology, Engineering, Arts, and Mathematics) program for career exploration of middle school students. The proposed program utilizes VR (Virtual Reality) for new digital technology and webtoon as a popular cultural element. It enables the students to investigate promising fields and experience them virtually for themselves. We design the program based on the 2015 revised curriculum, which enhances the learning effects with existing subjects. In particular, the program provides a hybrid education to combine contact and untact classes considering the COVID-19 situation. The educational goal of the proposed program is to improve creativity and convergence capability. Specifically, it aims to prepare an educational foundation that integrates new digital technologies into education and applies the programs to school education fields. To prove the effectiveness of the developed program, we applied the program to the second graders of A middle school located in Seoul. We expect that the proposed program helps students learn how to utilize new digital technologies and explore future career paths.

White striping degree assessment using computer vision system and consumer acceptance test

  • Kato, Talita;Mastelini, Saulo Martiello;Campos, Gabriel Fillipe Centini;Barbon, Ana Paula Ayub da Costa;Prudencio, Sandra Helena;Shimokomaki, Massami;Soares, Adriana Lourenco;Barbon, Sylvio Jr.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1015-1026
    • /
    • 2019
  • Objective: The objective of this study was to evaluate three different degrees of white striping (WS) addressing their automatic assessment and customer acceptance. The WS classification was performed based on a computer vision system (CVS), exploring different machine learning (ML) algorithms and the most important image features. Moreover, it was verified by consumer acceptance and purchase intent. Methods: The samples for image analysis were classified by trained specialists, according to severity degrees regarding visual and firmness aspects. Samples were obtained with a digital camera, and 25 features were extracted from these images. ML algorithms were applied aiming to induce a model capable of classifying the samples into three severity degrees. In addition, two sensory analyses were performed: 75 samples properly grilled were used for the first sensory test, and 9 photos for the second. All tests were performed using a 10-cm hybrid hedonic scale (acceptance test) and a 5-point scale (purchase intention). Results: The information gain metric ranked 13 attributes. However, just one type of image feature was not enough to describe the phenomenon. The classification models support vector machine, fuzzy-W, and random forest showed the best results with similar general accuracy (86.4%). The worst performance was obtained by multilayer perceptron (70.9%) with the high error rate in normal (NORM) sample predictions. The sensory analysis of acceptance verified that WS myopathy negatively affects the texture of the broiler breast fillets when grilled and the appearance attribute of the raw samples, which influenced the purchase intention scores of raw samples. Conclusion: The proposed system has proved to be adequate (fast and accurate) for the classification of WS samples. The sensory analysis of acceptance showed that WS myopathy negatively affects the tenderness of the broiler breast fillets when grilled, while the appearance attribute of the raw samples eventually influenced purchase intentions.

A Study on Visitor Motivation and Satisfaction of Urban Open Space - In the Case of Waterfront Open Space in Seoul - (도시 오픈스페이스 방문동기 및 만족도 연구 - 서울시 하천변 오픈스페이스를 중심으로 -)

  • Zoh, Kyung-Jin;Kim, Yong-Gook;Kim, Young-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.1
    • /
    • pp.27-40
    • /
    • 2014
  • The functions of urban open space, which embraces community revitalization, are diverse. It is the means of public healthcare, learning centers for children, hub of arts and cultural programs, as well as promoter of urban tourism. However, in-depth discourse and research on the topic of urban open spaces has been limited so far. Hence, this study aims to investigate the motivations and satisfaction of visitation based on four representative waterfront open space in Seoul; Cheongyecheon Waterfront, Seoul Forest Park, Seonyudo Park and Banpo Hangang Park. The methods of study are literature review, observation investigation, and questionnaire survey. The findings are analyzed through the Exploratory Factor Analysis, Reliability Analysis, ANOVA Analysis and Regression Analysis by SPSS 18.0. The results of the study are as follows. First, urban waterfront open spaces in Seoul has 5 factors of visitor motivation; community amenity, nature access, cultural and educational assets, aesthetic enjoyment, and lastly means of escape. Second, factors of recognizing urban waterfront open spaces as community amenity and nature access indicate meaningful differences in visitor's perception by spatial characteristics. Third, distances between the destination and the visitor's residence influence significantly their perceived motivation. Close-range visitors perceived nature access as a principal factor, whilst medium to long-range visitors perceived visitation for aesthetic purposes more importantly. Lastly, the will to escape was shown as the influential factor in visitor satisfaction. Visiting open spaces for the enjoyment of nature and aesthetic purposes were factors that also closely relate to visitor satisfaction. In addition, it was found that there are different visitor motivations that influence visitor satisfaction in accordance with the spatial characteristics of each open space. In summary, it can be said that urban waterfront open space is a hybrid space connected to various types of urban contents beyond daily experiences. It was found that several visitor motivations including community development, design aesthetics, education and culture, entertainment, enjoyment of natural landscape, and relaxation, affect the overall satisfaction of the visiting experience. It is anticipated that the results of the study will be used by the local government in setting up strategies for the creation and management of successful urban waterfront open space, and for those involved in planning and design act as a starting point for spatial programming and amenities arrangement in accordance to the city's tourism and urban marketing approach.

Ethyl acetate fraction from Pteridium aquilinum ameliorates cognitive impairment in high-fat diet-induced diabetic mice (고지방 식이로 유도된 실험동물의 당뇨성 인지기능 장애에 대한 고사리 아세트산에틸 분획물의 개선효과)

  • Kwon, Bong Seok;Guo, Tian Jiao;Park, Seon Kyeong;Kim, Jong Min;Kang, Jin Yong;Park, Sang Hyun;Kang, Jeong Eun;Lee, Chang Jun;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.649-658
    • /
    • 2017
  • The potential of the ethyl acetate fraction from Pteridium aquilinum (EFPA) to improve the cognitive function in high-fat diet (HFD)-induced diabetic mice was investigated. EFPA-treatment resulted in a significant improvement in the spatial, learning, and memory abilities compared to the HFD group in behavioral tests, including the Y-maze, passive avoidance, and Morris water maze. The diabetic symptoms of the EFPA-treated groups, such as fasting glucose and glucose tolerance, were alleviated. The administration of EFPA reduced the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) content in mice brains, but increased the acetylcholine (ACh) and superoxide dismutase (SOD) levels. Finally, kaempferol-3-o-glucoside, a major physiological component of EFPA, was identified by using high-performance liquid chromatography coupled with a hybrid triple quadrupole-linear ion trap mass spectrometer (QTRAP LC-MS/MS).

A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis (RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구)

  • Lee, Jae-Seong;Kim, Jaeyoung;Kang, Byeongwook
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.139-161
    • /
    • 2019
  • The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.