• Title/Summary/Keyword: Hybrid learning

Search Result 566, Processing Time 0.027 seconds

Fuzzy Indexing and Retrieval in CBR with Weight Optimization Learning for Credit Evaluation

  • Park, Cheol-Soo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.491-501
    • /
    • 2002
  • Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.

  • PDF

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

On-Line Travel Time Estimation Methods using Hybrid Neuro Fuzzy System for Arterial Road (검지자료합성을 통한 도시간선도로 실시간 통행시간 추정모형)

  • 김영찬;김태용
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.171-182
    • /
    • 2001
  • Travel Time is an important characteristic of traffic conditions in a road network. Currently, there are so many road users to get a unsatisfactory traffic information that is provided by existing collection systems such as, Detector, Probe car, CCTV and Anecdotal Report. This paper presents the results achieved with Data Fusion Model, Hybrid Neuro Fuzzy System for on - line estimation of travel times using RTMS(Remote Traffic Microwave Sensor) and Probe Data in the signalized arterial road. Data Fusion is the most important process to compose the various of data which can present real value for traffic situation and is also the one of the major process part in the TIC(Traffic Information Center) for analyzing and processing data. On-line travel time estimation methods(FALEM) on the basis of detector data has been evaluated by real value under KangNam Test Area.

  • PDF

A study on Defect Diagnosis of Gas Turbine Engine Using Hybrid SVM-ANN in Off-Design Region

  • Seo, Dong-Hyuck;Choi, Won-Jun;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.72-79
    • /
    • 2008
  • The weak point of the artificial neural network(ANN) is that it is easy to fall in local minima when it learns too much nonlinear data. Accordingly, the classification ratio must be low. To overcome this weakness, the hybrid method has been proposed. That is, the ANN learns data selectively after detecting the defect position by the support vector machine(SVM). First, the SVM has been used for determination of the defect position and then the magnitude of the defect has been measured by the ANN. In off-design condition, the operation region of the engine is wide and the nonlinearity of learning data increases. The module system, dividing the whole operating region into reasonably small-size sections, has been suggested to solve this problem. In this study, the proposed algorithm has diagnosed the defects of triple components as well as single and dual components of the gas turbine engine in off-design condition.

  • PDF

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Deep Learning-based Indoor Positioning System Using CSI (채널 상태 정보를 이용한 딥 러닝 기반 실내 위치 확인 시스템)

  • Zhang, Zhongfeng;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • Over the past few years, Wi-Fi signal based indoor positioning system (IPS) has been researched extensively because of its low expenses of infrastructure deployment. There are two major aspects of location-related information contained in Wi-Fi signals. One is channel state information (CSI), and one is received signal strength indicator (RSSI). Compared to the RSSI, the CSI has been widely utilized because it is able to reveal fine-grained information related to locations. However, the conventional IPS that employs a single access point (AP) does not exhibit decent performance especially in the environment of non-line-of-sight (NLOS) situations due to the reliability degeneration of signals caused by multipath fading effect. In order to address this problem, in this paper, we propose a novel method that utilizes multiple APs instead of a single AP to enhance the robustness of the IPS. In our proposed method, a hybrid neural network is applied to the CSIs collected from multiple APs. By relying more on the fingerprint constructed by the CSI collected from an AP that is less affected by the NLOS, we find that the performance of the IPS is significantly improved.

Human Laughter Generation using Hybrid Generative Models

  • Mansouri, Nadia;Lachiri, Zied
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1590-1609
    • /
    • 2021
  • Laughter is one of the most important nonverbal sound that human generates. It is a means for expressing his emotions. The acoustic and contextual features of this specific sound are different from those of speech and many difficulties arise during their modeling process. During this work, we propose an audio laughter generation system based on unsupervised generative models: the autoencoder (AE) and its variants. This procedure is the association of three main sub-process, (1) the analysis which consist of extracting the log magnitude spectrogram from the laughter database, (2) the generative models training, (3) the synthesis stage which incorporate the involvement of an intermediate mechanism: the vocoder. To improve the synthesis quality, we suggest two hybrid models (LSTM-VAE, GRU-VAE and CNN-VAE) that combine the representation learning capacity of variational autoencoder (VAE) with the temporal modelling ability of a long short-term memory RNN (LSTM) and the CNN ability to learn invariant features. To figure out the performance of our proposed audio laughter generation process, objective evaluation (RMSE) and a perceptual audio quality test (listening test) were conducted. According to these evaluation metrics, we can show that the GRU-VAE outperforms the other VAE models.

A hybrid approach to predict the bearing capacity of a square footing on a sand layer overlying clay

  • Erdal Uncuoglu;Levent Latifoglu;Zulkuf Kaya
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.561-575
    • /
    • 2023
  • This study investigates to provide a fast solution to the problem of bearing capacity in layered soils with easily obtainable parameters that does not require the use of any charts or calculations of different parameters. Therefore, a hybrid approach including both the finite element (FE) method and machine learning technique have been applied. Firstly, a FE model has been generated which is validated by the results of in-situ loading tests. Then, a total of 192 three-dimensional FE analyses have been performed. A data set has been created utilizing the soil properties, footing sizes, layered conditions used in the FE analyses and the ultimate bearing capacity values obtained from the FE analyses to be used in multigene genetic programming (MGGP). Problem has been modeled with five input and one output parameter to propose a bearing capacity formula. Ultimate bearing capacity values estimated from the proposed formula using data set consisting of 20 data independent of total data set used in MGGP modelling have been compared to the bearing capacities calculated with semi-empirical methods. It was observed that the MGGP method yielded successful results for the problem considered. The proposed formula provides reasonable predictions and efficient enough to be used in practice.

Artificial Intelligence Semiconductor and Packaging Technology Trend (인공지능 반도체 및 패키징 기술 동향)

  • Hee Ju Kim;Jae Pil Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.11-19
    • /
    • 2023
  • Recently with the rapid advancement of artificial intelligence (AI) technologies such as Chat GPT, AI semiconductors have become important. AI technologies require the ability to process large volumes of data quickly, as they perform tasks such as big data processing, deep learning, and algorithms. However, AI semiconductors encounter challenges with excessive power consumption and data bottlenecks during the processing of large-scale data. Thus, the latest packaging technologies are required for AI semiconductor computations. In this study, the authors have described packaging technologies applicable to AI semiconductors, including interposers, Through-Silicon-Via (TSV), bumping, Chiplet, and hybrid bonding. These technologies are expected to contribute to enhance the power efficiency and processing speed of AI semiconductors.

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.