• Title/Summary/Keyword: Hybrid heat exchanger

Search Result 45, Processing Time 0.028 seconds

Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

Cooling Performance Analysis of Ground-Source Heat Pump (GSHP) System with Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 2018
  • This paper presents the cooling performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a vertical GHE and a surface water heat exchanger (SWHE). In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the hybrid GHE, Mode 1~Mode 4. The measurement results show that the system with HGHE mainly operates in Mode 1 and Mode 2 over the entire measurement period. The average cooling coefficient of performance (COP) for heat pump unit was 5.18, while the system was 2.79. In steady state, the heat pump COP was slightly decreased with an increase of entering source temperature. In addition, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further research are needed to optimize the design data for various load ratios of the HGHE.

Numerical Analysis on the Performance of a Outdoor Air Cooled Heat exchanger for Cooling Tower (외기이용 하이브리드 냉각탑 성능해석)

  • Kim, Sung-Il;Lee, Wook-Hyun;Lee, Kye-Jung;Chun, Won-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2322-2327
    • /
    • 2008
  • This paper is to provide analysis model that can be used to investigate the improvement in energy efficiency for cooling tower by using fresh air. Numerical analysis of Air-cooled heat exchanger for single-phase flow with variations of outdoor air temperature has been performed. A complete set of correlations of the heat transfer in both refrigerant and air sides was employed for predicting the heat transfer rate. The numerical results derived from the correlations were verified with experimental results. The energy consumption for a hybrid cooling tower has been compared for variation of a outdoor air temperature. The results showed that the hybrid cooling tower in low outdoor temperature offers a significant improvement in energy efficiency. The thermal analysis aids significantly in the solution of the design problem of hybrid cooling tower.

  • PDF

A Study on Diagnosing Fouling of Heat Exchangers of a Hybrid Heat Pump (하이브리드 열펌프 열교환기 오염 진단 연구)

  • Shin, Younggy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.240-246
    • /
    • 2014
  • A fault detector was developed for heat exchangers of a hybrid heat pump (HP) for household. The proposed detector can be applied directly to raw operating data. It is to monitor a tracking error between a measured saturation temperature and its state observer. The observer was estimated from a state-space model simulating dynamics of a heat exchanger. The real hybrid HP was substituted with a dynamic simulator that implemented two-phased heat transfer and was validated by experimental data. And artificial fault data were generated using the simulator. Diagnosing the data showed the following. The residual calculated from the state observer error shows a relatively robust consistency with respect fouling level. The fault detector is practically useful because it detects a threshold fouling beyond which the performance starts to deteriorate significantly.

Dynamic Modeling and Simulation of a Hybrid Heat Pump (하이브리드 열펌프 동적 모델링 및 시뮬레이션)

  • Shin, Younggy;Kim, Jae Hyun;Yoo, Byeong Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.406-412
    • /
    • 2013
  • A hybrid heat pump is under development with the goal of utilizing 120% of primary energy resources. A plate heat exchanger is added between the compressor and air-cooled condenser of an ordinary heat pump to heat water. For successful operation of the heat pump, it is necessary to develop a control algorithm under various operating conditions. As a virtual test bed for that purpose, a dynamic model has been developed, to simulate its dynamic behavior. It was modeled in transient one-dimensions, with varying phase lengths considered. The model was implemented in Matlab and Simulink. Simulation results were effectively applied to design a control algorithm. They also provided physical insight into how to design and operate the system.

A basic study on development of high-pressure compact steam unit applied hybrid heat exchanger (하이브리드 열교환기 적용 고압 컴팩트 스팀 유닛 개발에 관한 기초 연구)

  • Kim, Jeung-Hoon;Lim, Gye-Hun;Kim, Seung-Hyun;Jin, Chul-Kyu;Park, Jae-Hong;Cho, Sung-Youl;Hong, In-Ki;Lee, Sang-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.453-457
    • /
    • 2016
  • In various industrial plants such as power generation plants, petrochemical plants, and unit factories, there is an increasing demand for a system that generates hot water using waste or surplus steam. Compact steam unit (CSU), which produces hot water by using steam, is a good solution considering energy reuse. In this study, as a basic study to develop a high-pressure CSU, heat transfer characteristics of a hybrid heat exchanger were investigated through experiments, in order to use the hybrid heat exchanger instead of a conventional plate heat exchanger as the core component of CSU. The experimental results are the followings. Heat balance between the hot side and cold side was satisfied within ${\pm}5%$. Overall heat transfer coefficient increased linearly as the Reynolds number increased and exceeded $5,524W/m^2K$ when the flow velocity was above 0.5 m/s. In addition, pressure drop also increased as the Reynolds number increased, and pressure drop per unit length was below 50 kPa/m.

Computer Simulation Study of the Thermoelectric Cooling by Hybrid Method (하이브리드법을 이용한 열전냉각의 수치해석 연구)

  • Kim, N.J.;Lee, J.Y.;Kim, C.B.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.97-108
    • /
    • 2000
  • The purpose of this study is to minimize the heat transfer surface area and cold fluid exit temperature of heat exchanger which applied to the refrigeration and air-conditioning system by utilizing the thermoelectric principle. Both uniform and non-uniform current distribution methods which applied to the analysis of the TE elements that incorporates heat exchanger were investigated. The non-uniform current distribution method had the better coefficient of performance and had the lower cold fluid exit temperature of the TE cooling system than the uniform current distribution method. It was found that if a TE cooling system incorporates a heat exchanger, a non-uniform current distribution should guarantee to the lowest cold fluid exit temperature. Also, the hybrid method (combination of the uniform and non-uniform current distribution method) is investigated to achieve the best results by combining the uniform and non-uniform current distributions. The results show that it can lower the cold fluid exit temperature and reduce the heat transfer surface area for the parallel flow arrangement if we apply the constant current in some entry region and the non-uniform increasing current in the direction of the cold fluid flow afterwards.

  • PDF

Development of Hybrid Expander Unit for Fin Tube Heat Exchanger (핀튜브 열교환기용 전관확관 유닛 개발)

  • Roh, Geonsang;Kim, Jongnam
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.165-168
    • /
    • 2011
  • In this paper, the hybrid tube expander unit for fin and tube type heat exchanger are developed by means of enlarging and inserting the smooth tube with a small diameter to a finned tube having larger diameter. In other word, the tube expander tool that is easy to attach and remove from tube is developed. The hybrid tube expander unit developed in this study can move easily and enlarge the tube without fixing at tube sheet. Also, this unit has a function removing scales inside tube by replacing a tube expander ball.

An Experimental Study on the Load Delivery Characteristics of Hybrid Energy System with Geothermal and Solar Heat Sources (지열-태양열원 복합시스템의 부하추종특성에 관한 실험 연구)

  • Hwang, In-Ju;Woo, Nam-Sub
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of the present study is to investigate the load delivery characteristics of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of a residential house in Korea. The hybrid energy system consists of ground source heat pump of 2 RT for cooling with a 150 m vertical U-bend ground heat exchanger, solar collectors of 4.8 m2 and gas fired backup boiler. The averaged coefficient of performance of geothermal module during cooling and heating seasons are evaluated as about 4.5 and 3.8, respectively.

  • PDF

An Experimental Study on Performance Characteristic of 30RT Closed-Type Hybrid Cooling Tower using Bare Tube (베어관을 이용한 30RT급 하이브리드 밀폐형 냉각탑의 성능특성에 관한 실험적 연구)

  • Jun, Chul-Ho;Lee, Ho-Saeng;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1096-1101
    • /
    • 2005
  • In this study, the experiment of thermal performance about closed-type hybrid cooling tower was conducted. A closed type cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water flows gravitational direction in the outer side of it. Air contacts of tube outer side are counterflow. The heat transfer pipe used in this experiment is a bare type tube having an outside diameter of 15.88mm. In this experiment, heat performances of the cooling tower are calculated such as overall heat transfer coefficient of between the process fluid and air, cooing capacity and pressure drop.

  • PDF