• Title/Summary/Keyword: Hybrid haptic device

Search Result 6, Processing Time 0.01 seconds

Force Display Based on Simultaneous Actuation of Motors and Brakes

  • Kwon, Tae-Bae;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1131-1135
    • /
    • 2004
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. However, the force feedback using active actuators such as motors can make the system active and sometimes unstable. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic device. A brake can generate a torque only against its rotation, but it is intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with both motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. For various haptic effects, contact with the virtual wall and representation of friction effect are extensively investigated in this paper. It is shown that the hybrid haptic system is more suited to some applications than the motor-based active haptic system.

  • PDF

Various Haptic Effects Based on Simultaneous Actuation of Motors and Brakes (모터와 브레이크의 동시구현에 기초한 다양한 햅틱효과의 제시)

  • Kwon Tae-Bum;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.602-608
    • /
    • 2005
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic devices. Motors can generate a torque in any direction, but they can make the system active during operation, thus leading to instability. Brakes can generate a torque only against their rotation, but they dissipate energy during operation, which makes the system intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. Among various haptic effects, contact with the virtual wall, representation of friction and representation of plastic deformation have been investigated extensively in this paper. It is shown that the hybrid haptic device is more suited to some applications than the motor-based haptic device.

Robust Control of a Haptic Interface Using LQG/LTR (LQG/LTR을 이용한 Haptic Interface의 강인제어)

  • Lee, Sang-Cheol;Park, Heon;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.757-763
    • /
    • 2002
  • A newly designed haptic interface enables an operator to control a remote robot precisely. It transmits position information to the remote robot and feeds back the interaction force from it. A control algorithm of haptic interface has been studied to improve the robustness and stability to uncertain dynamic environments with a proposed contact dynamic model that incorporates human hand dynamics. A simplified hybrid parallel robot dynamic model fur a 6 DOF haptic device was proposed to from a real time control system, which does not include nonlinear components. LQC/LTR scheme was adopted in this paper for the compensation of un-modeled dynamics. The recovery of the farce from the remote robot at the haptic interface was demonstrated through the experiments.

Haptic Experimentation for Single Degree of Freedom Force Output Joystick using Hybrid Motor/Brake Actuator

  • Jinung An;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.171.1-171
    • /
    • 2001
  • This paper describes the design and implementation of a new type of a force reflective joystick. It has single degree of freedom that is actuated by motor and brake pair. The use of motor and brake allows various objects to be simulated without the stability problem and related safety issues involved with high torque motors only. The joystick performance is measured by its ability to simulate various test objects. Simple test objects are modeled as a benchmark test of the system´s performance and to evaluate different control approaches for hybrid motor/brake actuator. The force output joystick is capable of simulating forces in a variety of virtual environments. This device demonstrates the effectiveness of a hybrid motor/brake haptic actuator.

  • PDF

Development of a Hybrid Haptic Master System Without Using a Force Sensor (힘 센서를 이용하지 않는 혼합형 햅틱 마스터 시스템의 개발)

  • Park, Gi-Hwan;Bae, Byeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1308-1316
    • /
    • 2001
  • A hybrid type master system is proposed to take the advantage of the link mechanism and magnetic levitation mechanism without using a force sensor. Two different types of electromagnetic actuators, moving coil type and moving magnet types are used to drive the master system which is capable of 4-DOF actuation. It is designed that the rotation motions about x-y axis are decoupled and the whole system is represented by simple dynamic equations. The force reflection is achieved by using the simple relation between the force and applied current and position. The simulation and experimental results are presented to show its performance.

모터와 브레이크의 복합동작에 기초한 가상환경의 구현

  • 권태범;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.19-19
    • /
    • 2004
  • 햅틱장치는 가상환경이나 원거리에 있는 환경과 사용자가 상호 작용할 매 촉감이나 힘을 전달하는 장치이다. 사용자에게 힘을 제시하기 위한 액츄에이터는 모터와 브레이크가 많이 사용되는데, 각각의 특성에 맞게 제어하여 성능과 안정성을 동시에 만족시켜야 한다 모터와 같은 능동 액츄에이터는 토크를 원하는 방향으로 쉽게 출력할 수 있지만, 동작 중 불안정한 상태가 발생할 수 있다. 반면에 브레이크와 같은 수동 액츄에이터는 회전에 반대되는 방향으로만 토크를 발생시킬 수 있지만, 동작 중 에너지를 계속 소모하기 때문에 시스템이 본질적으로 안정하다.(중략)

  • PDF