• Title/Summary/Keyword: Hybrid embrittlement

Search Result 3, Processing Time 0.017 seconds

Fracture Toughness Prediction of API X52 Using Small Punch Test Data in Hydrogen at Low Temperatures (소형펀치 시험을 이용한 API X52 저온 수소환경 파괴인성 예측)

  • Jae Yoon Kim;Ki Wan Seo;Yun Jae Kim;Ki Seok Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.117-129
    • /
    • 2023
  • Hydrogen embrittlement of a pipe is an important factor in hydrogen transport. To characterize hydrogen embrittlement, tensile and fracture toughness tests should be conducted. However, in the case of hydrogen-embrittled materials, it is difficult to perform tests in hydrogen environment, particularly at low temperatures. It would be useful to develop a methodology to predict the fracture toughness of hydrogen-embrittled materials at low temperatures using more efficient tests. In this study, the fracture toughness of API X52 steels in hydrogen at low temperatures is predicted from numerical simulation using coupled finite element (FE) damage analyses with FE diffusion analysis, calibrated by analyzing small punch test data.

Hybrid displacement FE formulations including a hole

  • Leconte, Nicolas;Langrand, Bertrand;Markiewicz, Eric
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.439-451
    • /
    • 2009
  • The paper deals with the problem related to the modelling of riveted assemblies for crashworthiness analysis of full-scale complete aircraft structures. Comparisons between experiments and standard FE computations on high-energy accidental situations onto aluminium riveted panels show that macroscopic plastic strains are not sufficiently localised in the FE shells connected to rivet elements. The main reason is related to the structural embrittlement caused by holes, which are currently not modelled. Consequently, standard displacement FE models do not succeed in initialising and propagating the rupture in sheet metal plates and along rivet rows as observed in the experiments. However, the literature survey show that it is possible to formulate super-elements featuring defects that both give accurate singular strain fields and are compatible with standard displacement finite elements. These super-elements can be related to the displacement model of the hybrid-Trefftz principle of the finite element method, which is a kind of domain decomposition method. A feature of hybrid-Trefftz finite elements is that they are mainly used for elastic computations. It is thus proposed to investigate the possibility of formulating a hybrid displacement finite element, including the effects of a hole, dedicated to crashworthiness analysis of full-scale aeronautic structures.

Recent Study of Technical Development for High Efficient Brazing (최신의 고능률 브레이징 기술개발 동향)

  • Yoo, Ho-Cheon
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.36-45
    • /
    • 2016
  • Recent developing tendency for technologies of high efficient brazing are studied by searching of NDSL, Science Direct, KIPRIS, PCT and so on. Active metal brazing, arc brazing, fluxless brazing, brazing with low melting point, reactive air brazing, laser brazing, laser droplet brazing are investigated. By optimal selecting of the above mentioned technologies, it needs to investigate an economical metallurgical design and the advanced brazing methods. To improve the embrittlement of intermetallic compound at brazing interface, it must be studied the inexpensive variant metals including nonmetals and the heat sources(MIG, TIG, Laser) by hybrid techniques.